Q.1 0.27 g of a long chain fatty acid was dissolved in 100 cm³ of hexane, 10 mL of this solution was added dropwise to the surface of water in a round watch glass. Hexane evaporates and a monolayer is formed. The distance from edge to centre of the watch glass is 10 cm. What is the height of the monolayer? [Density of fatty acid = 0.9 g cm⁻³, π = 3]

(1) 10⁻² m (2) 10⁻⁴ m (3) 10⁻⁸ m (4) 10⁻⁶ m

Ans. [4]

Sol. In 100 ml \(\text{gm of fatty acid} = 0.27 \text{ gm} \)

\[\frac{1 \text{ ml gm}}{100} = \frac{0.27}{100} \]

\[\frac{10 \text{ ml gm}}{100} = \frac{0.27 \times 10}{100} = 0.027 \]

\[d = \frac{m}{v} \]

\[d \times v = m \]

\[0.9 \left(\frac{\text{gm}}{\text{cm}^3} \right) \times \text{area} \times \text{height} = 0.027 \text{ gm} \]

\[0.9 \times (3) \times (10)^2 \times h = 0.027 \]

\[h = 10^{-4} \text{ cm} \]

\[h = 10^{-6} \text{ m} \]

Q.2 5 moles of an ideal gas at 100 K are allowed to undergo reversible compression till its temperature becomes 200 K. If \(C_V = 28 \text{ J K}^{-1} \text{ mol}^{-1} \), calculate \(\Delta U \) and \(\Delta pV \)

(1) \(\Delta U = 14 \text{ J}; \Delta (pV) = 0.8 \text{ J} \)

(2) \(\Delta U = 14 \text{ kJ}; \Delta (pV) = 4 \text{ kJ} \)

(3) \(\Delta U = 14 \text{ kJ}; \Delta (pV) = 18 \text{ J} \)

(4) \(\Delta U = 2.8 \text{ kJ}; \Delta (pV) = 0.8 \text{ kJ} \)

Ans. [2]

Sol. \(\Delta U = nC_V \Delta T \)

\[= 5(28) (100) \text{ J} = 14000 \text{ J} = 14 \text{ kJ} \]

\(\Delta PV = P_2V_2 - P_1V_1 \)

\[nRT_2 - nRT_1 = nR(T_2 - T_1) \]

\[= 5(8)(100) = 4000 \text{ J} = 4 \text{ kJ} \]
Q.3 The calculated spin-only magnetic moments (BM) of the anionic and cationic species of [Fe(H₂O)₆]²⁺ and [Fe(CN)₆]⁻⁴, respectively, are
(1) 2.84 and 5.92 (2) 0 and 5.92 (3) 0 and 4.9 (4) 4.9 and 0
Ans. [4]
Sol. Compound is [Fe(H₂O)₆]²⁺ [Fe(CN)₆]⁻⁴
Cation is [Fe(H₂O)₆]²⁺
Anion is [Fe(CN)₆]⁻⁴
Configuration of Fe²⁺ = (Ar) 3d⁶
 3d

For H₂O W.F. ligand

 + + + +

4 unpaired e⁻, ∴ μ = \sqrt{4(4+2)} = 4.9 = 4.9 B.M.

For CN⁻ & F. ligand

++ + + +

No unpaired e⁻
μ = 0

Q.4 The compound that inhibits the growth of tumors is -
(1) cis-[Pd(Cl)₂(NH₃)₂] (2) trans-[Pd(Cl)₂(NH₃)₂]
(3) cis-[Pt(Cl)₂(NH₃)₂] (4) trans-[Pt(Cl)₂(NH₃)₂]
Ans. [3]
Sol. cis platin is used to inhibit growth of tumors

Q.5 Which of the following compounds will show the maximum 'enol' content?
(1) CH₃COCH₃ (2) CH₃COCH₂COOC₂H₅
(3) CH₃COCH₂COCH₃ (4) CH₃COCH₂CONH₂
Ans. [3]
Sol. β-Dicarbonyl compound
β-Diketone
Extended conjugation and Intramolecular H-bonding in enolic form

Q.6 Which one of the following alkenes when treated with HCl yields majorly an anti Markovnikov product?
(1) CH₃O–CH=CH₂ (2) H₂N–CH=CH₂
(3) F₃C–CH=CH₂ (4) Cl–CH=CH₂
Ans. [3]
Sol.

\[
\begin{array}{c}
\text{F} \\
\text{F} \\
\text{C} \\
\text{H} \\
\end{array}
\]

– CF₃ → – H effect
Most e⁻ withdrawing group
Q.7 The major product of the following reaction is –

\[\text{CH}_3\text{Cl} \xrightarrow{\text{H}_2\text{O}, \Delta} \text{CHCl}_2 \text{Cl} \]

(1) \text{CH}_2\text{OH}
(2) \text{CO}_2\text{H}
(3) \text{CHO}
(4) \text{H}_2\text{O}

\text{Ans.} [1]

\text{Sol.}

\[\text{CH}_3\text{Cl} \xrightarrow{\text{Cl}_2/hv} \text{CHCl}_2 \text{Cl} \]

Q.8 Consider the bcc unit cells of the solids 1 and 2 with the position of atoms as shown below. The radius of atom B is twice that of atom A. The unit cell edge length is 50% more in solid 2 than in 1. What is the approximate packing efficiency in solid 2?

\[\text{Solid 1} \]

[1] 75%
[2] 90%
[3] 45%
[4] 65%

\text{Ans.} [2]

\text{Sol.}

\[\text{Solid 1} \]

\[\text{Solid 2} \]
\[r_3 = 2r_A \quad \text{and} \quad a_2 = 1.5a_1 \]
\[4r_A = \sqrt{3}a_1 \quad \text{and} \quad a_1 = \frac{4r_A}{\sqrt{3}} \]
\[a_2 = 1.5a_1 \]
\[\frac{3}{2} \cdot \frac{4r_A}{\sqrt{3}} \]
\[a_2 = 2\sqrt{3}r_A \]

\[\text{PE}_2 = \frac{\left(\frac{4}{3} \pi r_A^3 \times 1 \right) + \left(\frac{4}{3} \pi r_B^3 \times 1 \right)}{a_2^2} \]
\[= \frac{\frac{4}{3} \pi r_A^3 + \frac{4}{3} \pi (2r_A)^3}{(2\sqrt{3}r_A)^3} \]
\[= \frac{\frac{4}{3} \pi r_A^3 \times 9}{8 \times 3\sqrt{3} r_A^3} = \frac{\pi}{2\sqrt{3}} = 90.64\% \]
\[= 90\% \]

Q.9 If \(p \) is the momentum of the fastest electron ejected from a metal surface after the irradiation of light having wavelength \(\lambda \), then for 1.5 \(p \) momentum of the photoelectron, the wavelength of the light should be (Assume kinetic energy of ejected photoelectron to be very high in comparison to work function)

(1) \(\frac{4}{9}\lambda \)
(2) \(\frac{2}{3}\lambda \)
(3) \(\frac{3}{4}\lambda \)
(4) \(\frac{1}{2}\lambda \)

Ans. [1]

Sol.

\[E = \phi + \text{KE} \]
\[E = \text{KE} \]
\[\frac{h}{\lambda} = \frac{1}{2}mv^2 \left(\frac{m}{m} \right) = \frac{p^2}{2m} \]
\[p^2 \propto \frac{1}{\lambda} \]
\[\left(\frac{P_2}{P_1} \right)^2 = \frac{\lambda_1}{\lambda_2} \]
\[\left(\frac{1.5P_1}{P_1} \right)^2 = \frac{\lambda_1}{\lambda_2} \]
\[\left(\frac{3}{2} \right)^2 = \frac{\lambda_1}{\lambda_2} \]
\[\frac{9}{4} = \frac{\lambda_1}{\lambda_2} \]
\[\lambda_2 = \frac{4}{9}\lambda_1 \]
Q.10 The major product of the following reaction is –

\[
\begin{align*}
(1) & \text{tBuOK} \\
(2) & \text{Conc. H}_2\text{SO}_4/\Delta \\
(3) & \text{E}_2 \text{ Machanism} \\
(4) & \text{Stanny base}
\end{align*}
\]

Ans. [1]

Sol.

\[
\begin{align*}
\text{tBuOK} & \text{E}_2 \text{ Machanism} \\
\text{Stanny base} & \text{tBuOK}
\end{align*}
\]

Q.11 The Mond process is used for the-

(1) purification of Ni
(2) extraction of Zn
(3) extraction of Mo
(4) purification of Zr and Ti

Ans. [1]

Sol. Mond process is used for Ni

\[
\begin{align*}
\text{Ni} & + 4\text{CO} \xrightarrow{330-350K} \text{Ni(CO)}_4 \\
\text{impure} & \\
\text{Ni} & + 4\text{CO} \xrightarrow{330-350K} \text{Ni(CO)}_4 \\
\text{impure} & \\
\text{Ni} & + 4\text{CO} \xrightarrow{450-470K} \text{Ni(CO)}_4 \\
\text{Pure} &
\end{align*}
\]
Q.12 For the solution of the gases w, x, y and z in water at 298 K, the Henry law constants \((K_H)\) are 0.5, 2, 35 and 40 kbar, respectively. The correct plot for the given data is -

\[(1)\]
\begin{align*}
\text{Partial pressure} & \\
\text{(0, 0)} & \\
\text{mole fraction of water} & \\
\end{align*}

\[(2)\]
\begin{align*}
\text{Partial pressure} & \\
\text{(0, 0)} & \\
\text{mole fraction of water} & \\
\end{align*}

\[(3)\]
\begin{align*}
\text{Partial pressure} & \\
\text{(0, 0)} & \\
\text{mole fraction of water} & \\
\end{align*}

\[(4)\]
\begin{align*}
\text{Partial pressure} & \\
\text{(0, 0)} & \\
\text{mole fraction of water} & \\
\end{align*}

\[\text{Ans. [2]}\]

\[\text{Sol.}\]

\[k_H = \frac{p_g}{x_g} = \text{bar}\]

\[p_g = k_H x_g = k_H (1 - x_w)\]

\[= k_H - k_H x_w\]

\[= -k_H x_w + k_H\]

\[y = -mx + c\]

\[\text{Higher slope} = \text{higher } K_H\]

\[\text{Lower slope} = \text{Lower } K_H\]

\[k_H \quad \frac{z}{y} > \frac{k_H}{x} > \frac{k_H}{w}\]

Q.13 The IUPAC symbol for the element with atomic number 119 would be -

(1) uue (2) une (3) uun (4) unh

\[\text{Ans. [1]}\]

\[\text{Sol.}\]

\[z = 119\] is ununennium

\[\therefore\] uue

Q.14 The structure of Nylon-6 is ?

\[(1)\]
\[\text{(CH}_2\text{)}_{6-n}^{n} \text{C} – \text{N}\]

\[(2)\]
\[\text{(CH}_2\text{)}_{4-n}^{n} \text{C} – \text{N}\]

\[(3)\]
\[\text{C} – \text{(CH}_2\text{)}_{6-n}^{n} \text{N}\]

\[(4)\]
\[\text{C} – \text{(CH}_2\text{)}_{5-n}^{n} \text{N}\]
Q.15 The ion that has sp3d2 hybridization for the central atom is -

(1) [ICl$\text{4}^-]$ (2) [ICl$\text{2}^-]$ (3) [BrF$\text{2}^-]$ (4) [IF6^-]

Ans. [1]

Sol. Cl$\bigg[$ Cl Cl Cl $\bigg]$ sp3d2

Q.16 For a reaction scheme $A \underset{k_2}{\overset{k_1}{\longrightarrow}} B \underset{k_2}{\longrightarrow} C$, if the rate of formation of B is set to be zero then the concentration of B is given by -

(1) $(k_1 - k_2) [A]$ (2) $k_1k_2[A]$ (3) $(k_1 + k_2) [A]$ (4) $\left(\frac{k_1}{k_2}\right) [A]$

Ans. [4]

Sol. $\frac{dB}{dt} = K_1[A] - K_2[B] = 0$

$K_1[A] = K_2[B]$

$[B] = \frac{K_1}{K_2} [A]$

$\frac{dA}{dt} = K_1[A]$

$\frac{dC}{dt} = K_2[B]$

Q.17 For the following reactions, equilibrium constants are given -

$S(s) + O_2(g) \rightleftharpoons SO_2(g); K_1 = 10^{52}$

$2S(s) + 3O_2(g) \rightleftharpoons 2SO_3(g); K_2 = 10^{129}$

The equilibrium constant for the reaction,

$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$ is

(1) 10^{154} (2) 10^{181} (3) 10^{25} (4) 10^{77}

Ans. [3]

Sol. $S + O_2 \rightleftharpoons SO_2; K_1 = 10^{52}$

$2S + 3O_2 \rightleftharpoons 2SO_3; K_2 = 10^{129}$

$2SO_2 + O_2 \rightleftharpoons 2SO_3; K_3 = ?$

$K_3 = K_1^{-2} \cdot K_2 = \frac{K_2}{K_1^2} = \frac{10^{129}}{10^{104}} = 1$
Q.18 The statement that is incorrect about the interstitial compounds is -

(1) they are very hard (2) they have metallic conductivity
(3) they have high melting points (4) they are chemically reactive

Ans. [4]

Sol. Intersitial compound are –
(i) hard
(ii) chemically inert
(iv) high m.p.
As interstitial compounds are chemically inert

Q.19 The major product obtained in the following reaction is

\[
\text{NaOH} \xrightarrow{\Delta} \begin{array}{c}
\text{CH}_3 \\
\text{OHC} \\
\text{O}
\end{array}
\]

(1) \[\begin{array}{c}
\text{CH}_3 \\
\text{O} \\
\text{CH}_3
\end{array} \]
(2) \[\begin{array}{c}
\text{CH}_3 \\
\text{O} \\
\text{H}
\end{array} \]
(3) \[\begin{array}{c}
\text{CH}_3 \\
\text{O} \\
\text{H}
\end{array} \]
(4) \[\begin{array}{c}
\text{H}_3\text{C} \\
\text{CH}_2 \\
\text{O}
\end{array} \]

Ans. [2]

Sol.

\[\begin{array}{c}
\text{O} \\
\text{CH}_3 \\
\text{CH}=\text{O}
\end{array} \]

\[\text{Inter molecular aldol condensation} \]

\[\begin{array}{c}
\text{CH}_3 \\
\text{O}
\end{array} \]

\[\alpha, \beta \text{-unsaturated carbonyl compound} \]

Q.20 The percentage composition of carbon by mole in methane is -

(1) 75% (2) 80% (3) 20% (4) 25%

Ans. [3]

Sol. % composition of C by mole in CH₄
\[
\% \text{ C} = \frac{1}{5} \times 100
\]
= 20%
Q.21 Among the following molecules /ions, C_2^2, N_2^2, O_2^2, O_2 which one is diamagnetic and has the shortest bond length

(1) N_2^2 (2) O_2 (3) C_2^2 (4) O_2^2

Ans. [3]
Sol. O_2, N_2^2 = paramagnetic C_2^2 and O_2^2 = diamagnetic
C_2^2 has B.O. = 3
∴ diamagnetic & shortest B.L.

Q.22 Polysubstitution is a major drawback in -
(1) Reimer Tiemann reaction (2) Friedel Craft's acylation
(3) Friedel Craft's alkylation (4) Acetylation of aniline

Ans. [3]
Sol. Polysubstitution is a major drawback of Friedel–Craft alkylation
–CH_3 gp in highly activating group
due to +H effect of its

Q.23 Calculate the standard cell potential (in V) of the cell in which following reaction takes place –
$\text{Fe}^{2+} (\text{aq}) + \text{Ag}+ (\text{aq}) \rightarrow \text{Fe}^{3+} (\text{aq}) + \text{Ag} (s)$

Given that
$E^\circ_{\text{Ag}+/\text{Ag}} = xV$
$E^\circ_{\text{Fe}^{3+}/\text{Fe}} = yV$
$E^\circ_{\text{Fe}^{2+}/\text{Fe}} = zV$

(1) $x + 2y - 3z$ (2) $x + y - z$ (3) $x - y$ (4) $x - z$

Ans. [1]
Sol.

$E^\circ_{\text{cell}} = E^\circ_{\text{C}} - E^\circ_{\text{A}}$
$\begin{align*}
\text{R.P.} & - \text{R.P.} \\
\text{cell} & = \text{E}_C \text{Ag}^+ / \text{Ag} \\
\text{cell} & = \text{E}_C \text{Fe}^{3+}/\text{Fe}^{2+} = x - (3z - 2y) \\
\text{cell} & = x + 2y - 3z \\
\text{cell} & = \frac{\pm n_1 E_1 \pm n_2 E_2}{n_3} \\
\text{cell} & = \frac{3z - 2y}{1} = 3z - 2y
\end{align*}$

Q.24 The covalent alkaline earth metal halide ($X = \text{Cl, Br, I}$) is

(1) BeX_2 (2) SrX_2 (3) MgX_2 (4) CaX_2

Ans. [1]
Sol. Halides of Be are covalent
Q.25 The correct statement about ICl₅ and ICl₄⁻
(1) both are isostructural
(2) ICl₅ is square pyramidal and ICl₄⁻ is square planer
(3) ICl₅ is trigonal bipyramidal and ICl₄⁻ is tetrahedral
(4) ICl₅ is square pyramidal and ICl₄⁻ is tetrahedral
Ans. [2]
Sol. ICl₅ is \[\text{sp}^3\text{d}^2 \text{ square pyramidal} \]
ICl₄⁻ square planar \[\text{sp}^3\text{d}^2 \]
Q.26 The major product in the following reaction is ?
\[
\text{base} + \text{N} = \text{H}_2 \text{N} \rightarrow \text{N} = \text{H}_2 \text{N} + \text{CH}_3 \text{I}
\]
\[
\begin{align*}
(1) & \quad \text{N} = \text{H}_2 \text{N} \text{CH}_3 \\
(2) & \quad \text{N} = \text{H}_2 \text{N} \text{CH}_3 \\
(3) & \quad \text{N} = \text{H}_2 \text{N} \\
(4) & \quad \text{N} = \text{H}_2 \text{N} \text{CH}_3
\end{align*}
\]
Ans. [1] Bonus
Sol. \[
\text{base} + \text{N} = \text{H}_2 \text{N} \rightarrow \text{N} = \text{H}_2 \text{N} + \text{CH}_3 \text{I}
\]
Official answer according to NTA → 1
Q.27 The maximum prescribed concentration of copper in drinking water is -
(1) 5 ppm (2) 0.5 ppm (3) 3 ppm (4) 0.05 ppm
Ans. [3]
Sol. The prescribed conc. of Cu in drinking water is 3 ppm
Q.28 Fructose and glucose can be distinguished by -
(1) Fehling's test (2) Seliwanoff's test (3) Barfoed's test (4) Benedict's test
Ans. [2]
Sol. Glucose and fructose can be distinguished by seliwan eff's. It is used to distinguished aldose ketose group.
Q.29 The major product obtained in the following reaction is –

\[
\text{C–CH}_3 \quad \text{CN} \\
\text{H}_2/\text{PCl-C} \\
\text{C–CH}_3 \quad \text{H}_2\text{N} \\
\text{CH–CH}_3 \quad \text{OH} \quad \text{NH–CH}_3 \\
\text{CH}_2–\text{NH}_2
\]

Ans. [2]

Sol.

Q.30 The strength of 11.2 volume solution of H\(_2\)O\(_2\) is : [Given that molar mass of H = 1 g mol\(^{-1}\) and O = 16 g mol\(^{-1}\)]

(1) 1.7% (2) 34% (3) 3.4% (4) 13.6%

Ans. [3]

Sol.

11.2 vol. \(\text{H}_2\text{O}_2\)

\(m = ?\)

Vol. strength = 11.2 M

11.2 = 11.2 \(m\)

\(m = 1\)

1 mole \(\text{H}_2\text{O}_2\) prompt in IL solution

34 gm in 1000 gm solution

\[
\% = \frac{(\text{gm}\text{.}\text{solute})}{(\text{gm}\text{.}\text{solution})} \times 100
\]

\[
= \frac{34}{1000} \times 100 = 3.4\%
\]