PHYSICS

Q.1 Dimensional formula of $\frac{L}{RCV}$ is -

(1) $[M^0L^0T^0A^{-1}]$ (2) $[M^0L^0T^0A^{-1}]$ (3) $[M^1L^0T^0A^{-1}]$ (4) $[M^1L^1T^{-1}A^{-1}]$

Ans. [1]

Q.2 There is a thorium ($^{90}_{232}$Th) nucleus which emits 4α and 6β particles. Find the atomic number and atomic mass of daughter nuclei.

(1) 88, 216 (2) 82, 216 (3) 96, 232 (4) 90, 216

Ans. [1]

Q.3 Find focal length of combination of two lenses of equal radius of curvature:

(1) $\frac{1}{R} (\mu_1 - \mu_2 + 1)$ (2) $\frac{1}{R} (\mu_1 + \mu_2 - 2)$ (3) $\frac{1}{R} (\mu_1 + \mu_2 - 1)$ (4) $\frac{1}{R} (\mu_1 + \mu_2 - 3)$

Ans. [2]

Q.4 Graph of charge on capacitor with time is given. Determine current in the circuit at $t = 4$ sec.

(1) 0 (2) 1 (3) 2 (4) 3

Ans. [1]
Q.5 Variation of moment of inertia of a solid sphere about axis which is parallel to axis passing through the centre with the distance from the centre is:

(1) \(I \propto r \)
(2) \(I \propto r \)
(3) \(I \propto r \)
(4) \(I \propto r \)

Ans. [2]

Q.6 Minimum force required to slide down is 2N. Minimum force required to slide up is 10 N. Find coefficient of friction:

\[\tan \theta = \frac{F_{up}}{F_{down}} \]

(1) \(\frac{1}{2} \)
(2) \(\frac{\sqrt{3}}{2} \)
(3) \(\sqrt{3} \)
(4) \(\sqrt{2} \)

Ans. [2]

Q.7 For antenna of height 5, the range of LOS is d. On the surface of planet and for antenna of height h₂, the range of LOS is 2d, when radius of planet is double. The ratio of height h₁ & h₂ is

(1) \(\frac{1}{2} \)
(2) \(\frac{1}{4} \)
(3) 2
(4) 4

Ans. [1]

Q.8 A rod length 10 m falls in vertical orientation in horizontal magnetic field \(B_H = 5 \times 10^{-4} \) T with velocity \(v = 10 \) m/s, find potential across rod

(1) 10 mV
(2) 50 mV
(3) 0
(4) 5 mV

Ans. [3]

Q.9 If Ceq. of the circuit is 0.5 find value of C

(1) 2\(\mu \)F
(2) \(\frac{2}{3} \mu \)F
(3) \(\frac{3}{2} \mu \)F
(4) \(\frac{1}{2} \mu \)F

Ans. [2]
Q.10 Two particles A and B are orbiting around the earth in radius R and 2R. Find the ratio of their orbital speed.

(1) $\sqrt{2} : 1$
(2) $2 : 1$
(3) $1 : \sqrt{2}$
(4) $1 : 2$

Ans. [1]

Q.11 Two particles revolving with same angular velocity ω on a circular path of radius R_1 and radius R_2. Find relative angular velocity after time $t = \frac{\pi}{2\omega}$

(1) $\omega(R_2 - R_1)$
(2) $\frac{\omega(R_2 - R_1)}{R_1 + R_2}$
(3) $\frac{\omega(R_2 + R_1)}{R_2 - R_1}$
(4) Zero

Ans. [2]

Q.12 Wavelength correspond to maximum spectral radiancy at 300 K temperature is 10^{-4} m. Find wavelength correspond to maximum spectral radiancy at 350 K temperature.

(1) 2×10^{-4} m
(2) 1.5×10^{-4} m
(3) 2.2×10^{-4} m
(4) 1.16×10^{-4} m

Ans. [4]

Q.13 A block is suspended with the help of a wire through a rigid support vertically. The extension in length of wire is 4 mm. Now the whole system is dipped in liquid of relative density 2, then find new extension in string if relative density of block is 8.

(1) 1 mm
(2) 2 mm
(3) 3 mm
(4) 4 mm

Ans. [3]

Q.14 Determine phase difference between current I_1 & I_2 in AC circuit

(1) 0
(2) 30°
(3) 60°
(4) 75°

Ans. [4]
Equation of SHM of a particle is given by \(y = 5 \left(\sin 3\pi t + \sqrt{3} \cos 3\pi t \right) \) determine time period and amplitude of SHM. (Where \(y \) is in cm and \(t \) is in second).

(1) \(T = \frac{4}{3} \) sec, \(A=20 \) cm
(2) \(T = \frac{2}{3} \) sec, \(A=10 \) cm
(3) \(T = \frac{4}{3} \) sec, \(A=40 \) cm
(4) \(T = \frac{2}{3} \) sec, \(A=60 \) cm

Ans. [2]

If air in the soap bubble is being injected with constant rate \(r \). Find the graph of pressure versus time

Ans. [1]

A galvanometer has 25 divisions and its resistance is 50\(\Omega \). One division of galvanometer corresponds to \(4 \times 10^{-4} \) amp. current. Find the minimum value of resistance to be added to the galvanometer so that it can measure a value of 2.5 volt?

(1) 200\(\Omega \)
(2) 6200 \(\Omega \)
(3) 6250 \(\Omega \)
(4) 250 \(\Omega \)

Ans. [1]

If a particle of mass 20gm is moving with speed 5m/s as shown in the figure

Find the angular moment of particle about point \(X \) when it reaches at point \(A \)

(1) \(4 \times 10^{-3} \)
(2) \(4\sqrt{3} \times 10^{-3} \)
(3) \(12\sqrt{3} \times 10^{-3} \)
(4) \(3\sqrt{2} \times 10^{-3} \)

Ans. [3]
Q.19 A closed container having two gases of same number of mole at same temperature \(T \) are separated by piston of certain mass. Length of gas column of upper part is \(L_2 \) & length of gas column of lower part is \(L_1 \). \(L_2 > L_1 \). Determine mass of piston

\[
(1) \quad \frac{nRT}{g} \left(\frac{L_2 + L_1}{L_2 L_1} \right) \\
(2) \quad \frac{nRT}{g} \left(\frac{(L_2 L_1)^2}{L_2 + L_1} \right) \\
(3) \quad \frac{nRT}{g} \left(\frac{L_2 - L_1}{L_2 L_1} \right) \\
(4) \quad \frac{nRT}{g} \left(\frac{L_2 - L_1}{2L_2 L_1} \right)
\]

Ans. [3]

Q.20 An alpha particle of mass \(m \) collides with a stationary nucleus and recoils back with 64% loss of its kinetic energy find mass of nucleus. (assume elastic collision)

(1) 3m \hspace{1cm} (2) 4m \hspace{1cm} (3) 9m \hspace{1cm} (4) 16m

Ans. [3]