Section CAREER POINT JEE Main Online Exam 2019

[Memory Based Paper]

Questions & Answer

Morning | 9th January 2019

MATHEMATICS

Q.1	Two cards are chosen from a deck of cards with replacement and X is a random variable for the number of Aces chosen. Then $P(x = 1) + P(x = 2)$ is			
	(1) $\frac{35}{169}$	(2) $\frac{55}{169}$	(3) $\frac{65}{169}$	(4) $\frac{25}{169}$
Ans.	[4]			
Q.2	Average height and variance of 5 students in a class is 150 and 18 respectively. If we add one student whose			
	height is 156 cm then new variance is			
	(1) 21	(2) 24	(3) 25	(4) 20
Ans.	[4]			
Q.3	The value of $3(\cos \theta - \sin \theta)^4 + 6(\sin \theta + \cos \theta)^2 + 4 \sin^6 \theta$ is			
	(1) $13 - 4 \cos^4 \theta$		(2) $13 - 4\cos^2\theta + 2\sin^4\theta\cos^2\theta$ (4) $13 - 4\cos^6\theta + 2\sin^4\theta\cos^2\theta$	
	(3) $13 - 4 \cos^6 \theta$			
Ans.	[3]			
Q.4	If $\vec{a} = \hat{i} - \hat{j}$, $\vec{b} = \hat{i} + \hat{j} + \hat{k}$ are two vectors and \vec{c} is another vector such that $\vec{a} \times \vec{c} + \vec{b} = 0$ and $\vec{a} \cdot \vec{c} = 0$			
	then $ \vec{c} ^2 =$			
	$(1) \frac{15}{2}$	(2) $\frac{19}{2}$	(3) $\frac{17}{2}$	$(4) \frac{21}{2}$
Ans.	[2]			
Q.5	$a_1, a_2, \dots a_{10}$ are in A.P., $a_5 = 27, a_{10} = ?$			
	$S = \sum_{i=1}^{i=30} a_i \& T = \sum_{i=1}^{15} a(2i-1), S - 2T = 75$			
	(1) 53	(2) 52	(3) 56	(4) 57
Ans.	[2]			

Q.6 The equation of the common tangent to the parabola $y^2 = 4x$ and the circle $x^2 + y^2 - 6x = 0$ is

(1)
$$y = \pm \frac{1}{\sqrt{3}} x \pm \sqrt{3}$$

(2) $y = \frac{1}{\sqrt{2}} x \pm \sqrt{2}$
(3) $y = \sqrt{3} x \pm \sqrt{2}$
(4) $y = \pm \sqrt{3} x \pm \frac{1}{\sqrt{3}}$

Ans. [1]

- Q.7 If $x^2 + 2x + 2 = 0$. Then $\alpha^{15} + \beta^{15}$ is (1) 2^9 (2) -2^8 (3) 2^8 (4) 2^{11}
- Ans. [2]

Q.8 If $\frac{x^2}{\cos^2 \theta} - \frac{y^2}{\sin^2 \theta} = 1$ and e > 2. Then the range of length of latus rectum is $\left(\theta \in \left(0, \frac{\pi}{2}\right)\right)$ (1) (1, 3/2) (2) (2, 3) (3) (3, ∞) (4) (3, 4) Ans. [3]

Q.9 If p and q are the statement the $(p \oplus q) \land (\sim p \Theta q)$ is equivalent to $(p \land q)$ then ordered value of (\oplus, Θ) is (1) \land, \land (2) \lor, \lor (3) \land, \lor (4) \lor, \land Ans [3]

Q.10 If a, b, c are in G.P. then a + b + c = xb. Then $x \neq$ (1) -2 (2) -3 (3) 4 (4) 2 Ans. [4]

Q.11
$$\left\{\frac{2^{403}}{15}\right\} = \frac{k}{15}$$
. Then k is
(1) 8 (2) 9 (3) 10 (4) 7

Ans. [1]

Q.12
$$\lim_{x \to 0} \frac{\sqrt{1 + \sqrt{1 + x^4}} - \sqrt{2}}{x^4} \text{ is equal to }$$
(1) $\frac{1}{2\sqrt{2}}$
(2) $\frac{1}{\sqrt{2}}$
(3) $\frac{1}{8\sqrt{2}}$
(4) $\frac{1}{4\sqrt{2}}$
Ans. [4]

 Q.13 The area bounded by the curve $y = x^2 - 1$ and tangent to it at (2, 3) and y-axis is

 (1) 8/3 (2) 2/3 (3) 4/3 (4) 1/3

 Ans.
 [1]

🦈 🛛 CAREER POINT

JEE Main Online Paper

Q.14 A plane parallel to y axis passing through line of intersection of planes x + y + z = 1 and 2x + 3y - z = 4, then which of the point lies on the plane (1) (2, 3, 1) (2) (3, -1, 1) (3) (2, 1, 3) (4) (-3, 2, 1) Ans. [2]

Q.15 If
$$f_1(x) = \frac{1}{x}$$
, $f_2(x) = 1 - x$, $f_3(x) = \frac{1}{1 - x}$ and $(f_{20}Jof_1)(x) = f_3(x)$. Find out $J(x)$
(1) $f_1(x)$ (2) $\frac{f_3(x)}{x}$ (3) $f_3(x)$ (4) $\frac{f_2(x)}{x}$

Ans. [3]

Q.16
$$f(x) = \begin{cases} 5 & x < 1 \\ a + bx & 1 \le x < 3 \\ b + 5x & 3 \le x < 5 \\ 30 & x \ge 5 \end{cases}$$
, what is possible value of a & b if f(x) is continuous for $x \in \mathbb{R}$
(1) $a = 0, b = 10$ (2) $a = -5, b = 10$ (3) $a, b \in \phi$ (4) $a = -5, b = 0$
Ans. [3]

Q.17 If
$$\cos^{-1}\left(\frac{2}{3x}\right) + \cos^{-1}\left(\frac{3}{4x}\right) = \frac{\pi}{2}, \ x > \frac{3}{4}$$
 then find x
(1) $\frac{\sqrt{145}}{13}$ (2) $\frac{\sqrt{155}}{12}$ (3) $\frac{\sqrt{145}}{12}$ (4) $\frac{\sqrt{155}}{13}$

Ans. [3]

Q.18
$$\frac{3+2i\sin\theta}{1-2i\sin\theta}$$
, $\theta \in \left(-\frac{\pi}{2}, \pi\right)$ is purely imaginary. Find sum of all value of θ
(1) $2\pi/3$ (2) $\pi/3$ (3) $4\pi/3$ (4) π

Ans. [1]

Q.19
$$\int x \sqrt{\frac{2\sin(x^2 - 1) + \sin 2(x^2 - 1)}{2\sin(x^2 - 1) - \sin 2(x^2 - 1)}} \, dx , \quad (x^2 \neq n\pi + 1, n \in N) \text{ equals-}$$
(1) $\log_e \left(\frac{x^2 - 1}{2}\right) + c$
(2) $\frac{1}{2}\log_e \left(\frac{x^2 - 1}{2}\right) + c$
(3) $\log_e \sec\left(\frac{x^2 - 1}{2}\right) + C$
(4) $\frac{1}{2}\log_e \sec\left(\frac{x^2 - 1}{2}\right) + c$
Ans. [4]

CAREER POINT

JEE Main Online Paper

Q.20 If a < b < c then three circles are touching each other externally and have x-axis as a common tangent, then -

(1)
$$\sqrt{a} + \sqrt{c} = \sqrt{b}$$

(2) $\frac{1}{\sqrt{b}} + \frac{1}{\sqrt{c}} = \frac{1}{\sqrt{a}}$
(3) a, b, c are in A.P.
(4) $a^2 + c^2 = b^2$

Ans. [2]

Q.21 If θ is angle of intersection between $y = 10 - x^2$ and $y = 4 + x^2$ then $|\tan \theta|$ is –

(1)
$$\frac{5\sqrt{3}}{11}$$
 (2) $\frac{7\sqrt{3}}{15}$ (3) $\frac{4\sqrt{3}}{11}$ (4) None

Ans. [3]

Q.22 Find the equation of line through (-4, 1, 3) & parallel to the plane x + y + z = 3, while the line intersects another line $\frac{x-5}{-1} = \frac{y+5}{2} = \frac{z-0}{1}$ is -

(1)
$$\frac{x+4}{-3} = \frac{y-1}{-2} = \frac{z-3}{1}$$

(2) $\frac{x+4}{1} = \frac{y-1}{2} = \frac{z-3}{-3}$
(3) $\frac{x+4}{-3} = \frac{y-1}{2} = \frac{z-3}{1}$
(4) $\frac{x+4}{-1} = \frac{y-1}{2} = \frac{z-3}{-3}$

Ans. [3]

Q.23
$$\int_{0}^{\pi} |\cos x|^{3} dx =$$

(1) 0 (2) $\frac{4}{3}$ (3) $\frac{8}{3}$ (4) $\frac{2}{3}$

Ans. [2]

Q.24 If
$$A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$
 then A^{-50} at $\theta = \frac{\pi}{12}$ is equal to

$$(1) \begin{bmatrix} -\sqrt{3}/2 & -1/2 \\ -1/2 & \sqrt{3}/2 \end{bmatrix}$$

$$(2) \begin{bmatrix} 1/2 & \sqrt{3}/2 \\ \sqrt{3}/2 & -1/2 \end{bmatrix}$$

$$(3) \begin{bmatrix} -\sqrt{3}/2 & 1/2 \\ 1/2 & \sqrt{3}/2 \end{bmatrix}$$

$$(4) \begin{bmatrix} \sqrt{3}/2 & 1/2 \\ -1/2 & \sqrt{3}/2 \end{bmatrix}$$
Area [4]

Ans. [4]

Q.25 If 5 girls and 7 boys are in a class. How many number of groups can be made by 2 girls and 3 boys in which two particular boys never comes together
(1) 280 (2) 310 (3) 300 (4) 305
Ans. [3]

🧐 🛛 CAREER POINT

JEE Main Online Paper

- **Q.26** There is a parabola having axis as x-axis, vertex is at a distance of 2 units from origin and focus is at (4, 0) which of the point does not lie on the parabola.
 - (1) (6, 8) (2) (5, $2\sqrt{6}$) (3) (8, $4\sqrt{3}$) (4) (4, -4)

Q.27If
$$y(x)$$
 is solution of $x \frac{dy}{dx} + 2y = x^2$, $y(1) = 1$ then value of $y\left(\frac{1}{2}\right)$ is equal to $(1) -\frac{49}{16}$ $(2) \frac{45}{8}$ Ans.[3]Q.28If slant height of a right circular cone is 3 cm then the maximum value of cone is -
 $(1) 4\sqrt{3} \pi$ $(2) 2\sqrt{3} \pi$ $(3) (2+\sqrt{3})\pi$ (4) $(2-\sqrt{3})\pi$ Ans.[2]Q.29If $px + qy + r = 0$ represent family of straight lines such that $3p + 2q + 4r = 0$ then
 (1) All lines are parallel(2) All line are concurrent at $(3, 2)$ (4) None of theseAns.[2]Q.30Consider the system of equation $x + y + z = 1$, $2x + 3y + 2z = 1$, $2x + 3y + (a^2 - 1) z = a + 1$, then
 (1) System is inconsistent for $|a| = \sqrt{3}$ Q.30Consider the system of equation $x = 3$ Q.31Consider the system of equation $x = 3$ Q.32Consider the system of equation $x = 3$ Q.33Consider the system of equation $x = 3$ Q.34System is inconsistent for $a = 3$ Q.35Consider the system of equation $x = 3$ Q.36Consider the system of equation $x = 3$ Q.37Consider the system of equation $x = 3$ Q.38Consider the system of equation $x = 3$ Q.39Consider the system of equation $x = 3$ Q.30Consider the system of equation $x = 3$ Q.31Consider the system of equation $x = 3$ Q.32Consider the system of equation $x = 3$ Q.33Consider the system of equation $x = 3$ Q.34Consider the system of equation $x = 3$ Q.35Consider the system of equation x

Ans. [1]