Q.1 A steel wire having a radius of 2.0 mm, carrying a load of 4 kg, is hanging from a ceiling. Given that $g = 3.1 \pi \text{ m/s}^{-2}$, what will be the tensile stress that would be developed in the wire?

Options:
1. $6.2 \times 10^6 \text{ N/m}^2$
2. $5.2 \times 10^6 \text{ N/m}^2$
3. $3.1 \times 10^6 \text{ N/m}^2$
4. $4.8 \times 10^6 \text{ N/m}^2$

Q.2 If 10^{22} gas molecules each of mass 10^{-26} kg collide with a surface (perpendicular to it) elastically per second over an area 1 m2 with a speed 10^4 m/s, the pressure exerted by the gas molecules will be of the order of:

Options:
1. 10^4 N/m^2
2. 10^8 N/m^2
3. 10^3 N/m^2
4. 10^{16} N/m^2
Q.3 The bob of a simple pendulum has mass 2 g and a charge of 5.0 μC. It is at rest in a uniform horizontal electric field of intensity 2000 V/m. At equilibrium, the angle that the pendulum makes with the vertical is:
(take g = 10 m/s²)
Options
1. tan⁻¹ (2.0)
2. tan⁻¹ (0.2)
3. tan⁻¹ (5.0)
4. tan⁻¹ (0.5)

Q.4 A boy’s catapult is made of rubber cord which is 42 cm long, with 6 mm diameter of cross-section and of negligible mass. The boy keeps a stone weighing 0.02 kg on it and stretches the cord by 20 cm by applying a constant force. When released, the stone flies off with a velocity of 20 m/s⁻¹. Neglect the change in the area of cross-section of the cord while stretched. The Young’s modulus of rubber is closest to:
Options
1. 10⁶ Nm⁻²
2. 10⁴ Nm⁻²
3. 10⁸ Nm⁻²
4. 10³ Nm⁻²
Q.5 A plane electromagnetic wave travels in free space along the x-direction. The electric field component of the wave at a particular point of space and time is \(E = 6 \text{ Vm}^{-1} \) along y-direction. Its corresponding magnetic field component, B would be:

Options 1. \(2 \times 10^{-8} \text{ T} \) along z-direction
2. \(6 \times 10^{-8} \text{ T} \) along x-direction
3. \(6 \times 10^{-8} \text{ T} \) along z-direction
4. \(2 \times 10^{-8} \text{ T} \) along y-direction

Q.6 Ship A is sailing towards north-east with velocity \(\vec{u} = 30 \hat{i} + 50 \hat{j} \) km/hr where \(\hat{i} \) points east and \(\hat{j} \), north. Ship B is at a distance of 80 km east and 150 km north of Ship A and is sailing towards west at 10 km/hr. A will be at minimum distance from B in:

Options 1. 4.2 hrs.
2. 2.6 hrs.
3. 3.2 hrs.
4. 2.2 hrs.
Q.7 A thin strip 10 cm long is on a U shaped wire of negligible resistance and it is connected to a spring of spring constant 0.5 Nm\(^{-1}\) (see figure). The assembly is kept in a uniform magnetic field of 0.1 T. If the strip is pulled from its equilibrium position and released, the number of oscillations it performs before its amplitude decreases by a factor of e is N. If the mass of the strip is 50 grams, its resistance 10 \(\Omega\) and air drag negligible, N will be close to:

Options 1. 1000
2. 50000
3. 5000
4. 10000

Q.8 Four particles A, B, C and D with masses \(m_A = m, \ m_B = 2m, \ m_C = 3m\) and \(m_D = 4m\) are at the corners of a square. They have accelerations of equal magnitude with directions as shown. The acceleration of the centre of mass of the particles is:

Options 1. \(\frac{a}{5}(\hat{i} - \hat{j})\)
2. \(a\left(\hat{i} + \hat{j}\right)\)
3. Zero
4. \(\frac{a}{5}\left(\hat{i} + \hat{j}\right)\)

Q.9 A solid conducting sphere, having a charge \(Q\), is surrounded by an uncharged conducting hollow spherical shell. Let the potential difference between the surface of the solid sphere and that of the outer surface of the hollow shell be \(V\). If the shell is now given a charge of \(-4Q\), the new potential difference between the same two surfaces is:

Options 1. \(-2V\)
2. \(2V\)
3. \(4V\)
4. \(V\)

Q.10 A 20 Henry inductor coil is connected to a 10 ohm resistance in series as shown in figure. The time at which rate of dissipation of energy (Joule's heat) across resistance is equal to the rate at which magnetic energy is stored in the inductor, is:

![Circuit diagram]
Q.11 A thin circular plate of mass M and radius R has its density varying as \(\rho(r) = \rho_0 r \) with \(\rho_0 \) as constant and \(r \) is the distance from its center. The moment of inertia of the circular plate about an axis perpendicular to the plate and passing through its edge is \(I = a MR^2 \). The value of the coefficient \(a \) is:

Options
1. \(\frac{1}{2} \)
2. \(\frac{3}{5} \)
3. \(\frac{8}{5} \)
4. \(\frac{3}{2} \)

Q.12 In SI units, the dimensions of \(\sqrt{\frac{\varepsilon_0}{\mu_0}} \) is:

Options
1. \(A^{-1}TML^3 \)
2. \(AT^2M^{-1}L^{-1} \)
3. \(AT^{-3}ML^{3/2} \)
4. \(A^2T^3M^{-1}L^{-2} \)
Q.13 A thermally insulated vessel contains 150 g of water at 0°C. Then the air from the vessel is pumped out adiabatically. A fraction of water turns into ice and the rest evaporates at 0°C itself. The mass of evaporated water will be closest to:

(Latent heat of vaporization of water = 2.10 × 10^6 J kg\(^{-1}\) and Latent heat of Fusion of water = 3.36 × 10^5 J kg\(^{-1}\))

Options:
1. 150 g
2. 20 g
3. 130 g
4. 35 g

Q.14 The reverse breakdown voltage of a Zener diode is 5.6 V in the given circuit.

![Circuit Diagram]

The current I\(_z\) through the Zener is:

Options:
1. 10 mA
2. 17 mA
3. 15 mA
4. 7 mA
Q.15
In an interference experiment the ratio of amplitudes of coherent waves is \(\frac{a_1}{a_2} = \frac{1}{3} \).
The ratio of maximum and minimum intensities of fringes will be:

Options 1. 2
2. 18
3. 4
4. 9

Q.16
Water from a pipe is coming at a rate of 100 liters per minute. If the radius of the pipe is 5 cm, the Reynolds number for the flow is of the order of: (density of water = 1000 kg/m\(^3\), coefficient of viscosity of water = 1 mPa s)

Options 1. \(10^3\)
2. \(10^4\)
3. \(10^2\)
4. \(10^6\)
Q.17 Two identical beakers A and B contain equal volumes of two different liquids at 60°C each and left to cool down. Liquid in A has density of $8 \times 10^2 \text{ kg/m}^3$ and specific heat of 2000 J kg$^{-1}$ K$^{-1}$ while liquid in B has density of 10^3 kg/m^3 and specific heat of 4000 J kg$^{-1}$ K$^{-1}$. Which of the following best describes their temperature versus time graph schematically? (assume the emissivity of both the beakers to be the same)

Options

1. ![Graph A]

2. ![Graph B]

3. ![Graph C]

4. ![Graph D]

Q.18 Voltage rating of a parallel plate capacitor is 500 V. Its dielectric can withstand a maximum electric field of 10^6 V/m. The plate area is 10^{-4} m^2. What is the dielectric constant if the capacitance is 15 pF?

(given $\varepsilon_0 = 8.86 \times 10^{-12} \text{ C}^2/\text{Nm}^2$)

Options 1. 3.8

2. 3.9

3. 4.0

4. 4.1
2. 8.5
3. 4.5
4. 6.2

Q.19 Two particles move at right angle to each other. Their de Broglie wavelengths are λ_1 and λ_2 respectively. The particles suffer perfectly inelastic collision. The de Broglie wavelength λ, of the final particle, is given by:

Options

1. $\frac{1}{\lambda^2} = \frac{1}{\lambda_1^2} + \frac{1}{\lambda_2^2}$
2. $\lambda = \sqrt[3]{\lambda_1 \lambda_2}$
3. $\lambda = \frac{\lambda_1 + \lambda_2}{2}$
4. $\frac{2}{\lambda} = \frac{1}{\lambda_1} + \frac{1}{\lambda_2}$

Q.20 A 200 Ω resistor has a certain color code. If one replaces the red color by green in the code, the new resistance will be:

Options

1. 100 Ω
2. 400 Ω
3. 300 Ω
4. 500 Ω
Q.21 Four identical particles of mass M are located at the corners of a square of side ‘a’. What should be their speed if each of them revolves under the influence of others' gravitational field in a circular orbit circumscribing the square?

\[\text{a} \]

Options

1. \(1.35 \sqrt{\frac{GM}{a}}\)
2. \(1.16 \sqrt{\frac{GM}{a}}\)
3. \(1.21 \sqrt{\frac{GM}{a}}\)
4. \(1.41 \sqrt{\frac{GM}{a}}\)

Q.22 The wavelength of the carrier waves in a modern optical fiber communication network is close to:

Options

1. 2400 nm
2. 1500 nm
3. 600 nm
4. 900 nm
Q.23 An upright object is placed at a distance of 40 cm in front of a convergent lens of focal length 20 cm. A convergent mirror of focal length 10 cm is placed at a distance of 60 cm on the other side of the lens. The position and size of the final image will be:

Options
1. 20 cm from the convergent mirror, same size as the object
2. 40 cm from the convergent mirror, same size as the object
3. 40 cm from the convergent lens, twice the size of the object
4. 20 cm from the convergent mirror, twice the size of the object

Q.24 A circular coil having N turns and radius r carries a current I. It is held in the XZ plane in a magnetic field $\mathbf{B}\hat{z}$. The torque on the coil due to the magnetic field is:

Options
1. $\frac{Br^2 I}{\pi N}$
2. $B\pi r^2 I N$
3. $B\pi r^2 \frac{I}{N}$
4. Zero
Q.25 An alternating voltage \(v(t) = 220 \sin 100\pi t \) volt is applied to a purely resistive load of 50 \(\Omega \). The time taken for the current to rise from half of the peak value to the peak value is:

Options:
1. 5 ms
2. 2.2 ms
3. 7.2 ms
4. 3.3 ms

Q.26 Radiation coming from transitions \(n=2 \) to \(n=1 \) of hydrogen atoms fall on He\(^+\) ions in \(n=1 \) and \(n=2 \) states. The possible transition of helium ions as they absorb energy from the radiation is:

Options:
1. \(n=2 \rightarrow n=3 \)
2. \(n=1 \rightarrow n=4 \)
3. \(n=2 \rightarrow n=5 \)
4. \(n=2 \rightarrow n=4 \)
Q.27

A wire of length 2L, is made by joining two wires A and B of same length but different radii \(r \) and \(2r \) and made of the same material. It is vibrating at a frequency such that the joint of the two wires forms a node. If the number of antinodes in wire A is \(p \) and that in B is \(q \) then the ratio \(p : q \) is:

Options

1. 3 : 5
2. 4 : 9
3. 1 : 2
4. 1 : 4

Q.28

In figure, the optical fiber is \(l = 2 \) m long and has a diameter of \(d = 20 \) \(\mu \text{m} \). If a ray of light is incident on one end of the fiber at angle \(\theta_1 = 40^\circ \), the number of reflections it makes before emerging from the other end is close to:

(re refractive index of fiber is 1.31 and \(\sin 40^\circ = 0.64 \))

Options

1. 55000
2. 66000
3. 45000
4. 57000

Question Type : MCQ
Question ID : 41652912708
Option 1 ID : 41652949611
Option 2 ID : 41652949612
Option 3 ID : 41652949610
Option 4 ID : 41652949613
Status : Answered
Chosen Option : 3
Q.29 A particle moves in one dimension from rest under the influence of a force that varies with the distance travelled by the particle as shown in the figure. The kinetic energy of the particle after it has travelled 3 m is:

Options 1. 4 J
2. 2.5 J
3. 6.5 J
4. 5 J

Q.30 For the circuit shown, with $R_1 = 1.0 \ \Omega$, $R_2 = 2.0 \ \Omega$, $E_1 = 2 \ \text{V}$ and $E_2 = E_3 = 4 \ \text{V}$, the potential difference between the points 'a' and 'b' is approximately (in V):

Options 1. 2.7
2. 2.3
3. 3.7
4. 3.3

Question Type: MCQ
Question ID: 41652912712
Option 1 ID: 41652949628
Option 2 ID: 41652949629
Option 3 ID: 41652949626
Option 4 ID: 41652949627
Status: Answered
Chosen Option: 3

Section: Chemistry

Q.1 An organic compound ‘X’ showing the following solubility profile is:

```
<table>
<thead>
<tr>
<th>Substance</th>
<th>Solubility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>Insoluble</td>
</tr>
<tr>
<td>5% HCl</td>
<td>Insoluble</td>
</tr>
<tr>
<td>10% NaOH</td>
<td>Soluble</td>
</tr>
<tr>
<td>10% NaHCO₃</td>
<td>Insoluble</td>
</tr>
</tbody>
</table>
```

Options:
1. o-Toluidine
2. Oleic acid
3. m-Cresol
4. Benzamide

Question Type: MCQ
Question ID: 41652912734
Option 1 ID: 41652949716
Option 2 ID: 41652949714
Option 3 ID: 41652949715
Option 4 ID: 41652949717
Status: Answered
Chosen Option: 3
Q.2 Adsorption of a gas follows Freundlich adsorption isotherm. \(x \) is the mass of the gas adsorbed on mass \(m \) of the adsorbent.

The plot of \(\log \frac{x}{m} \) versus \(\log p \) is shown in the given graph. \(\frac{x}{m} \) is proportional to:

\[
\log \frac{x}{m} \quad \log p
\]

Options
1. \(p^{2/3} \)
2. \(p^{3/2} \)
3. \(p^3 \)
4. \(p^2 \)

Q.3 An organic compound neither reacts with neutral ferric chloride solution nor with Fehling solution. It however, reacts with Grignard reagent and gives positive iodoform test. The compound is:

Options
1.
2.

Question Type : MCQ
Question ID : 41652912755
Option 1 ID : 41652949800
Option 2 ID : 41652949799
Option 3 ID : 41652949801
Option 4 ID : 41652949798
Status : Answered
Chosen Option : 2
Q.4 The size of the iso-electronic species Cl\(^-\), Ar and Ca\(^{2+}\) is affected by:

Options
1. azimuthal quantum number of valence shell
2. electron-electron interaction in the outer orbitals
3. Principal quantum number of valence shell
4. nuclear charge

Q.5 In order to oxidise a mixture of one mole of each of FeC\(_2\)O\(_4\), Fe\(_2\)(C\(_2\)O\(_4\))\(_3\), FeSO\(_4\) and Fe\(_2\)(SO\(_4\))\(_3\) in acidic medium, the number of moles of KMnO\(_4\) required is:

Options
1. 2
2. 1
3. 3
4. 1.5
Q.6 In the following compounds, the decreasing order of basic strength will be:

Options
1. \(C_2H_5NH_2 > NH_3 > (C_2H_5)_2NH \)
2. \((C_2H_5)_2NH > NH_3 > C_2H_5NH_2 \)
3. \((C_2H_5)_2NH > C_2H_5NH_2 > NH_3 \)
4. \(NH_3 > C_2H_5NH_2 > (C_2H_5)_2NH \)

Q.7 The major product of the following reaction is:

\[
\begin{align*}
\text{OCH}_3 & \quad \text{Conc. HBr (excess)} \\
\text{CH} = \text{CH}_2 & \quad \text{heat}
\end{align*}
\]

Options
1. \(\text{Br} - \text{CHCH}_3 \)
2. \(\text{Br} - \text{CHCH}_3 \)
3. \(\text{CH}_2\text{CH}_2\text{Br} \)
4. The correct order of the spin-only magnetic moment of metal ions in the following low-spin complexes, \([\text{V(CN)}_6]^{4-}\), \([\text{Fe(CN)}_6]^{4-}\), \([\text{Ru(NH}_3)_6]^{3+}\), and \([\text{Cr(NH}_3)_6]^{2+}\), is:

Options
1. \(\text{Cr}^{2+} > \text{Ru}^{3+} > \text{Fe}^{2+} > \text{V}^{2+}\)
2. \(\text{V}^{2+} > \text{Cr}^{2+} > \text{Ru}^{3+} > \text{Fe}^{2+}\)
3. \(\text{V}^{2+} > \text{Ru}^{3+} > \text{Cr}^{2+} > \text{Fe}^{2+}\)
4. \(\text{Cr}^{2+} > \text{V}^{2+} > \text{Ru}^{3+} > \text{Fe}^{2+}\)

Q.9 The major product of the following reaction is:

\[
\begin{array}{c}
\text{O} \\
\text{Cl}
\end{array} + \begin{array}{c}
\text{O} \\
\text{Cl}
\end{array} \xrightarrow{\text{(i) AlCl}_3 \text{ heat}} \xrightarrow{\text{(ii) H}_2\text{O}} \text{O}
\]

Options
1. \(\text{O} \text{-Cl} \text{-O} \text{-Cl}\)
Q.10 For silver, $C_p(J K^{-1} mol^{-1}) = 23 + 0.01T$. If the temperature (T) of 3 moles of silver is raised from 300 K to 1000 K at 1 atm pressure, the value of ΔH will be close to:

Options 1. 62 kJ
2. 16 kJ
3. 21 kJ
4. 13 kJ

Q.11 Which is wrong with respect to our responsibility as a human being to protect our environment?

Options 1. Restricting the use of vehicles
2. Avoiding the use of floodlighted facilities.
3. Setting up compost tin in gardens.
4. Using plastic bags.

Q.12 The following ligand is:

Options 1. hexadentate
2. tetradeutate
3. bidentate
4. tridentate

Q.13 If solubility product of Zr_3(PO_4)_4 is denoted by K_{sp} and its molar solubility is denoted by S, then which of the following relation between S and K_{sp} is correct?

Options
1. \(S = \left(\frac{K_{sp}}{144} \right)^{\frac{1}{6}} \)
2. \(S = \left(\frac{K_{sp}}{6912} \right)^{\frac{1}{7}} \)
3. \[S = \left(\frac{K_{sp}}{929} \right)^{1/6} \]

4. \[S = \left(\frac{K_{sp}}{216} \right)^{1/7} \]

Q.14 The major product of the following reaction is:

\[\text{O} \quad \text{Br} \quad \text{NaBH}_4 \quad \text{MeOH, 25°C} \]

Options

1. \[\text{O} \quad \text{Br} \]
2. \[\text{OH} \quad \text{OMe} \]
3. \[\text{Br} \quad \text{OMe} \]
4. \[\text{O} \]

Q.15 Diborane (B\textsubscript{2}H\textsubscript{6}) reacts independently with O\textsubscript{2} and H\textsubscript{2}O to produce, respectively:
Q.16 Which one of the following equations does not correctly represent the first law of thermodynamics for the given processes involving an ideal gas? (Assume non-expansion work is zero)

Options
1. Cyclic process: \(q = -w \)
2. Adiabatic process: \(\Delta U = -w \)
3. Isochoric process: \(\Delta U = q \)
4. Isothermal process: \(q = -w \)

Q.17 With respect to an ore, Ellingham diagram helps to predict the feasibility of its

Options
1. Electrolysis
2. Zone refining
3. Vapour phase refining
4. Thermal reduction
Q.18
100 mL of a water sample contains 0.81 g of calcium bicarbonate and 0.73 g of magnesium bicarbonate. The hardness of this water sample expressed in terms of equivalents of CaCO₃ is:

(molar mass of calcium bicarbonate is 162 g mol⁻¹ and magnesium bicarbonate is 146 g mol⁻¹)

Options
1. 5,000 ppm
2. 1,000 ppm
3. 100 ppm
4. 10,000 ppm

Q.19
Given that $E_{O_2/H_2O}^\ominus = +1.23 \ V$;

$E_{S_2O_8^{2-}/SO_4^{2-}}^\ominus = 2.05 \ V$

$E_{Br_2/Br^-}^\ominus = +1.09 \ V$

$E_{Au^{3+}/Au}^\ominus = +1.4 \ V$

The strongest oxidizing agent is:

Options
1. Au^{3+}
2. O_2
3. $S_2O_8^{2-}$
4. Br_2
Q.20 The IUPAC name of the following compound is:

\[\text{CH}_3 \text{ OH} \]

\[\text{H}_3\text{C} - \text{CH} - \text{CH}_2 - \text{COOH} \]

Options
1. 4,4-Dimethyl-3-hydroxybutanoic acid
2. 2-Methyl-3-hydroxypentan-5-oic acid
3. 3-Hydroxy-4-methylpentanoic acid
4. 4-Methyl-3-hydroxypentanoic acid

Q.21 Element 'B' forms ccp structure and 'A' occupies half of the octahedral voids, while oxygen atoms occupy all the tetrahedral voids. The structure of bimetallic oxide is:

Options
1. \(A_2B_4O_4 \)
2. \(AB_2O_4 \)
3. \(A_2B_2O \)
4. \(A_4B_2O \)
Q.22

For the reaction \(2A + B \rightarrow C\), the values of initial rate at different reactant concentrations are given in the table below. The rate law for the reaction is:

<table>
<thead>
<tr>
<th>[A] (mol L(^{-1}))</th>
<th>[B] (mol L(^{-1}))</th>
<th>Initial Rate (mol L(^{-1})s(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>0.05</td>
<td>0.045</td>
</tr>
<tr>
<td>0.10</td>
<td>0.05</td>
<td>0.090</td>
</tr>
<tr>
<td>0.20</td>
<td>0.10</td>
<td>0.72</td>
</tr>
</tbody>
</table>

Options:
1. \(\text{Rate} = k[A][B]^2\)
2. \(\text{Rate} = k[A]^2[B]^2\)
3. \(\text{Rate} = k[A][B]\)
4. \(\text{Rate} = k[A]^2[B]\)

Q.23

The lanthanide ion that would show colour is:

Options:
1. \(\text{Gd}^{3+}\)
2. \(\text{Sm}^{3+}\)
3. \(\text{La}^{3+}\)
4. \(\text{Lu}^{3+}\)

Q.24

Maltose on treatment with dilute HCl gives:
Options 1. D-Glucose and D-Fructose
2. D-Fructose
3. D-Galactose
4. D-Glucose

Q.25 The vapour pressures of pure liquids A and B are 400 and 600 mmHg, respectively at 298 K. On mixing the two liquids, the sum of their initial volumes is equal to the volume of the final mixture. The mole fraction of liquid B is 0.5 in the mixture. The vapour pressure of the final solution, the mole fractions of components A and B in vapour phase, respectively are:

Options 1. 450 mmHg, 0.4, 0.6
2. 500 mmHg, 0.5, 0.5
3. 450 mmHg, 0.5, 0.5
4. 500 mmHg, 0.4, 0.6

Q.26 Which of the following amines can be prepared by Gabriel phthalimide reaction?

Options 1. n-butylamine
2. triethylamine
3. t-butylamine
4. neo-pentylamine
Q.27 The quantum number of four electrons are given below:
I. \(n=4, l=2, m_l=-2, m_s=-\frac{1}{2} \)
II. \(n=3, l=2, m_l=1, m_s=+\frac{1}{2} \)
III. \(n=4, l=1, m_l=0, m_s=+\frac{1}{2} \)
IV. \(n=3, l=1, m_l=1, m_s=-\frac{1}{2} \)
The correct order of their increasing energies will be:

Options
1. IV < III < II < I
2. I < II < III < IV
3. IV < II < III < I
4. I < III < II < IV

Q.28 Coupling of benzene diazonium chloride with 1-naphthol in alkaline medium will give:

Options
1. \[
\begin{align*}
\text{HO} \\
\text{N} \\
\text{N} \\
\text{N}
\end{align*}
\]

Q.29 Assertion: Ozone is destroyed by CFCs in the upper stratosphere.

Reason: Ozone holes increase the amount of UV radiation reaching the earth.

Options:
1. Assertion and reason are incorrect.
2. Assertion and reason are correct.
Assertion and reason are both correct, and the reason is the correct explanation for the assertion.

Assertion and reason are correct, but the reason is not the explanation for the assertion.

Assertion is false, but the reason is correct.

Q.30 The correct order of hydration enthalpies of alkali metal ions is:

Options 1. Li$^+$ > Na$^+$ > K$^+$ > Cs$^+$ > Rb$^+$
2. Na$^+$ > Li$^+$ > K$^+$ > Rb$^+$ > Cs$^+$
3. Na$^+$ > Li$^+$ > K$^+$ > Cs$^+$ > Rb$^+$
4. Li$^+$ > Na$^+$ > K$^+$ > Rb$^+$ > Cs$^+$

Section: Mathematics

Q.1 The shortest distance between the line $y = x$ and the curve $y^2 = x - 2$ is:

Options 1. $\frac{7}{8}$
2. $\frac{7}{4\sqrt{2}}$
3. $\frac{11}{4\sqrt{2}}$
4. $\frac{7}{4\sqrt{2}}$
Q.2 \[
\lim_{x \to 0} \frac{\sin^2 x}{\sqrt{2} - \sqrt{1 + \cos x}} \text{ equals:}
\]
Options
1. \(4\sqrt{2}\)
2. \(\sqrt{2}\)
3. \(2\sqrt{2}\)
4. 4

Q.3 The greatest value of \(c \in \mathbb{R}\) for which the system of linear equations
\[
x - cy - cz = 0
\]
\[
cx - y + cz = 0
\]
\[
cx + cy - z = 0
\]
has a non-trivial solution, is:
Options
1. \(-1\)
2. \(\frac{1}{2}\)
3. 2
4. 0

Q.4 The contrapositive of the statement “If you are born in India, then you are a citizen of India”, is:
Options
1. If you are not a citizen of India, then you are not born in India.
2. If you are a citizen of India, then you are born in India.
3. If you are born in India, then you are not a citizen of India.
4. If you are not born in India, then you are not a citizen of India.

Q.5
All possible numbers are formed using the digits 1, 1, 2, 2, 2, 3, 4, 4 taken all at a time. The number of such numbers in which the odd digits occupy even places is:

Options 1. 180
2. 175
3. 160
4. 162

Q.6
Let \(A = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \), \((\alpha \in \mathbb{R})\) such that
\[A^{32} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \]. Then a value of \(\alpha \) is:

Options 1. \(\frac{\pi}{32} \)
2. 0
3. \(\frac{\pi}{64} \)
4. \(\frac{\pi}{16} \)

Q.7

If \(\cos(\alpha + \beta) = \frac{3}{5} \), \(\sin(\alpha - \beta) = \frac{5}{13} \) and

\[0 < \alpha, \beta < \frac{\pi}{4} \], then \(\tan(2\alpha) \) is equal to:

Options

1. \(\frac{63}{52} \)
2. \(\frac{63}{16} \)
3. \(\frac{21}{16} \)
4. \(\frac{33}{52} \)

Q.8

The sum of the co-efficients of all even degree terms in \(x \) in the expansion of

\[(x + \sqrt{x^3 - 1})^6 + (x - \sqrt{x^3 - 1})^6, \ (x > 1) \]

is equal to:

Options

1. 29
2. 32
3. 26
4. 24
Q.9
\[
\int \frac{\sin \frac{5x}{2}}{\sin \frac{x}{2}} \, dx \text{ is equal to :}
\]
(where \(c \) is a constant of integration.)

Options
1. \(2x + \sin x + 2 \sin 2x + c \)
2. \(x + 2 \sin x + 2 \sin 2x + c \)
3. \(x + 2 \sin x + \sin 2x + c \)
4. \(2x + \sin x + \sin 2x + c \)

Q.10
The mean and variance of seven observations are 8 and 16, respectively. If 5 of the observations are 2, 4, 10, 12, 14, then the product of the remaining two observations is :

Options
1. 45
2. 49
3. 48
4. 40

Q.11
The equation of a plane containing the line of intersection of the planes \(2x - y - 4 = 0 \) and \(y + 2z - 4 = 0 \) and passing through the point \((1, 1, 0)\) is :

Options
1. \(x - 3y - 2z = -2 \)
2. \(2x - z = 2 \)
3. $x - y - z = 0$
4. $x + 3y + z = 4$

Q.12

The magnitude of the projection of the vector $2\hat{i} + 3\hat{j} + \hat{k}$ on the vector perpendicular to the plane containing the vectors $\hat{i} + \hat{j} + \hat{k}$ and $\hat{i} + 2\hat{j} + 3\hat{k}$, is:

Options:
1. $\frac{\sqrt{3}}{2}$
2. $\sqrt{6}$
3. $3\sqrt{6}$
4. $\frac{\sqrt{3}}{\sqrt{2}}$

Q.13

The sum of the squares of the lengths of the chords intercepted on the circle, $x^2 + y^2 = 16$, by the lines, $x + y = n$, $n \in \mathbb{N}$, where \mathbb{N} is the set of all natural numbers, is:

Options:
1. 320
2. 105
3. 160
4. 210
Q.14 Let A and B be two non-null events such that \(A \subseteq B \). Then, which of the following statements is always correct?

Options
1. \(P(A|B) = P(B) - P(A) \)
2. \(P(A|B) \geq P(A) \)
3. \(P(A|B) \leq P(A) \)
4. \(P(A|B) = 1 \)

Q.15 If \(\alpha \) and \(\beta \) be the roots of the equation \(x^2 - 2x + 2 = 0 \), then the least value of \(n \) for which \(\left(\frac{\alpha}{\beta} \right)^n = 1 \) is:

Options
1. 2
2. 5
3. 4
4. 3

Q.16 The area (in sq.units) of the region
\(A = \{(x, y) \in \mathbb{R} \times \mathbb{R} | 0 \leq x \leq 3, 0 \leq y \leq 4, y \leq x^2 + 3x \} \) is:

Options
1. \(\frac{53}{6} \)
2. 8
3. \(\frac{59}{6} \)
4. \(\frac{26}{3} \)

Q.17 If \(S_1 \) and \(S_2 \) are respectively the sets of local minimum and local maximum points of the function, \(f(x) = 9x^4 + 12x^3 - 36x^2 + 25, x \in \mathbb{R} \), then:

Options:
1. \(S_1 = \{-2\}; S_2 = \{0, 1\} \)
2. \(S_1 = \{-2, 0\}; S_2 = \{1\} \)
3. \(S_1 = \{-2, 1\}; S_2 = \{0\} \)
4. \(S_1 = \{-1\}; S_2 = \{0, 2\} \)

Q.18 If \(\alpha = \cos^{-1}\left(\frac{3}{5}\right), \beta = \tan^{-1}\left(\frac{1}{3}\right) \), where \(0 < \alpha, \beta < \frac{\pi}{2} \), then \(\alpha - \beta \) is equal to:

Options:
1. \(\tan^{-1}\left(\frac{9}{5\sqrt{10}}\right) \)
2. \(\cos^{-1}\left(\frac{9}{5\sqrt{10}}\right) \)
3. \(\tan^{-1}\left(\frac{9}{14}\right) \)
4. \(\sin^{-1}\left(\frac{9}{5\sqrt{10}}\right) \)
Q.19
The sum of the series
\[2 \cdot 20C_0 + 5 \cdot 20C_1 + 8 \cdot 20C_2 + 11 \cdot 20C_3 + \ldots + 62 \cdot 20C_{20}\]
is equal to:

Options 1. 226
2. 225
3. 223
4. 224

Q.20
The sum of the solutions of the equation
\[|\sqrt{x} - 2| + \sqrt{x}(\sqrt{x} - 4) + 2 = 0, \quad (x > 0)\]
is equal to:

Options 1. 9
2. 12
3. 4
4. 10

Q.21
If the tangents on the ellipse \(4x^2 + y^2 = 8\) at the points \((1, 2)\) and \((a, b)\) are perpendicular to each other, then \(a^2\) is equal to:

Options 1. \(\frac{128}{17}\)
2. \(\frac{64}{17}\)
3. \(\frac{4}{17}\)
4. \[\frac{2}{17} \]

Question 22

Let \(y = y(x) \) be the solution of the differential equation, \((x^2 + 1)^2 \frac{dy}{dx} + 2x(x^2 + 1)y = 1 \) such that \(y(0) = 0 \). If \(\sqrt{a}y(1) = \frac{\pi}{32} \), then the value of ‘\(a \)’ is:

Options
1. \(\frac{1}{4} \)
2. \(\frac{1}{2} \)
3. 1
4. \(\frac{1}{16} \)

Question 23

The sum of all natural numbers ‘\(n \)’ such that \(100 < n < 200 \) and H.C.F. \((91, n) > 1 \) is:

Options
1. 3203
2. 3303
3. 3221
4. 3121

Question Type: MCQ
Question ID: 41652912777
Option 1 ID: 41652949887
Option 2 ID: 41652949889
Option 3 ID: 41652949888
Option 4 ID: 41652949886
Status: Answered
Chosen Option: 3

Question Type: MCQ
Question ID: 41652912772
Option 1 ID: 41652949869
Option 2 ID: 41652949867
Option 3 ID: 41652949868
Option 4 ID: 41652949866
Status: Answered
Chosen Option: 3

Question Type: MCQ
Question ID: 41652912763
Option 1 ID: 41652949830
Option 2 ID: 41652949833
Option 3 ID: 41652949831
Option 4 ID: 41652949832
Status: Answered
Q.24
The length of the perpendicular from the point \((2, -1, 4)\) on the straight line,
\[
\frac{x + 3}{10} = \frac{y - 2}{-7} = \frac{z}{1}
\]
is:

Options
1. greater than 3 but less than 4
2. less than 2
3. greater than 2 but less than 3
4. greater than 4

Q.25
A point on the straight line, \(3x + 5y = 15\) which is equidistant from the coordinate axes will lie only in:

Options
1. 4th quadrant
2. 1st quadrant
3. 1st and 2nd quadrants
4. 1st, 2nd and 4th quadrants

Q.26
Let \(O(0, 0)\) and \(A(0, 1)\) be two fixed points. Then the locus of a point \(P\) such that the perimeter of \(\triangle AOP\) is 4, is:

Options
1. \(8x^2 - 9y^2 + 9y = 18\)
2. \(9x^2 - 8y^2 + 8y = 16\)
3. \(9x^2 + 8y^2 - 8y = 16\)
4. \(8x^2 + 9y^2 - 9y = 18\)
Q.27

If

\[2y = \left(\cot^{-1} \left(\frac{\sqrt{3} \cos x + \sin x}{\cos x - \sqrt{3} \sin x} \right) \right)^2, \quad x \in \left(0, \frac{\pi}{2} \right) \]

then \(\frac{dy}{dx} \) is equal to:

Options
1. \(\frac{\pi}{6} - x \)
2. \(x - \frac{\pi}{6} \)
3. \(\frac{\pi}{3} - x \)
4. \(2x - \frac{\pi}{3} \)

Question Type: MCQ
Question ID: 41652912766
Option 1 ID: 41652949842
Option 2 ID: 41652949844
Option 3 ID: 41652949843
Option 4 ID: 41652949845
Status: Answered
Chosen Option: 3

Q.28

If \(f(x) = \log_e \left(\frac{1 - x}{1 + x} \right), \ |x| < 1 \), then

\(f\left(\frac{2x}{1 + x^2} \right) \)

is equal to:

Options
1. \(2f(x) \)
2. \(2f(x^2) \)
3. \((f(x))^2 \)
4. \(-2f(x) \)

Question Type: MCQ
Question ID: 41652912756
Option 1 ID: 41652949804
Option 2 ID: 41652949802
Option 3 ID: 41652949805
Option 4 ID: 41652949803
Status: Answered
Chosen Option: 3
Q.29 Let \(f: [0, 2] \rightarrow \mathbb{R} \) be a twice differentiable function such that \(f''(x) > 0 \), for all \(x \in (0, 2) \). If \(\phi(x) = f(x) + f(2-x) \), then \(\phi \) is:

Options:
1. increasing on \((0, 1)\) and decreasing on \((1, 2)\).
2. decreasing on \((0, 2)\).
3. decreasing on \((0, 1)\) and increasing on \((1, 2)\).
4. increasing on \((0, 2)\).

Q.30 If \(f(x) = \frac{2 - x \cos x}{2 + x \cos x} \) and \(g(x) = \log_e x \), \((x > 0)\) then the value of the integral

\[
\int_{\frac{\pi}{4}}^{\frac{\pi}{4}} g(f(x)) \, dx
\]

is:

Options:
1. \(\log_e 3 \)
2. \(\log_e e \)
3. \(\log_e 2 \)
4. \(\log_e 1 \)