1. Let \(f \) be a differentiable function from \(\mathbb{R} \) to \(\mathbb{R} \) such that \(|f(x) - f(y)| \leq 2|x - y|^{3/2} \), for all \(x, y \in \mathbb{R} \). If \(f(0) = 1 \), then \(\int_0^1 f^2(x)\,dx \) is equal to:

- (1) 0
- (2) \(\frac{1}{2} \)
- (3) 2
- (4) 1

Ans. (4)

Sol.

\[|f(x) - f(y)| \leq 2|x - y|^{3/2} \]

Divide both sides by \(|x - y|^{1/2} \):

\[\left| \frac{f(x) - f(y)}{x - y} \right| \leq 2|x - y| \]

Applying limit as \(x \to y \):

\[|f'(y)| < 0 \]

\[f'(y) = 0 \]

\[f(x) = c \]

\[f(x) = 1 \]

\[\int_0^1 f(x)\,dx = 1 \]

2. If \(\int_0^{\pi/2} \frac{\tan \theta}{\sqrt{2}k \sec \theta} \, d\theta = 1 - \frac{1}{\sqrt{2}}, (k > 0) \), then the value of \(k \) is:

- (1) 2
- (2) \(\frac{1}{2} \)
- (3) 4
- (4) 1

Ans. (1)

Sol.

\[\frac{1}{\sqrt{2}k} \int_0^{\pi/2} \frac{\tan \theta}{\sec \theta} \, d\theta = \frac{1}{\sqrt{2}k} \int_0^{\pi/2} \frac{\sin \theta}{\cos \theta} \, d\theta \]

\[= \frac{1}{\sqrt{2}k} \left[\frac{\sqrt{k}}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right) \right] \]

Given it is \(1 - \frac{1}{\sqrt{2}} \Rightarrow k = 2 \)

3. The coefficient of \(t^4 \) in the expansion of

\[\left(\frac{1-t^6}{1-t} \right)^3 \]

is:

- (1) 12
- (2) 15
- (3) 10
- (4) 14

Ans. (2)

Sol.

\[(1-t^6)^3 (1-t)^{-3} \]

\[(1-t^{18} - 3t^6 + 3t^{12}) (1-t)^{-3} \]

\[\Rightarrow \text{coefficient of } t^4 \text{ in } (1-t)^{-3} \text{ is } 3^3 = 27 \]

4. For each \(x \in \mathbb{R} \), let \([x]\) be the greatest integer less than or equal to \(x \). Then

\[\lim_{x \to 0^+} \frac{x([x]+[x])\sin[x]}{|x|} \]

is equal to:

- (1) \(-\sin 1\)
- (2) 0
- (3) 1
- (4) \(\sin 1\)

Ans. (1)

Sol.

\[\lim_{x \to 0^+} \frac{x([x]+[x])\sin[x]}{|x|} \]

\[x \to 0^+ \]

\[[x] = 1 \Rightarrow \lim_{x \to 0^+} \frac{x(-x-1)\sin(-1)}{-x} = -\sin 1 \]

\[|x| = -x \]

5. If both the roots of the quadratic equation \(x^2 - mx + 4 = 0 \) are real and distinct and they lie in the interval \([1,5]\), then \(m \) lies in the interval:

- (1) \((4,5)\)
- (2) \((3,4)\)
- (3) \((5,6)\)
- (4) \((-5,-4)\)

Ans. (Bonus/1)

Sol.

\(x^2 - mx + 4 = 0 \)

\(\alpha, \beta \in [1,5] \)

(1) \(D > 0 \Rightarrow m^2 - 16 > 0 \)

\[\Rightarrow m \in (-\infty,-4) \cup (4,\infty) \]

(2) \(f(1) \geq 0 \Rightarrow 5-m \geq 0 \Rightarrow m \in (-\infty,5] \)

(3) \(f(5) \geq 0 \Rightarrow 29-5m \geq 0 \Rightarrow m \in \left(-\infty, \frac{29}{5}\right] \)

(4) \(1 < \frac{-b}{2a} < 5 \Rightarrow 1 < \frac{m}{2} < 5 \Rightarrow m \in (2,10) \)

\[\Rightarrow m \in (4,5) \]

No option correct : Bonus

* If we consider \(\alpha, \beta \in (1,5) \) then option (1) is correct.
6. If

\[
A = \begin{bmatrix}
e^{t} & e^{-t} \cos t & e^{-t} \sin t \\
e^{t} & -e^{-t} \cos t - e^{-t} \sin t & -e^{-t} \sin t + e^{-t} \cos t \\
e^{t} & 2e^{-t} \sin t & -2e^{-t} \cos t
\end{bmatrix}
\]

Then A is -

(1) Invertible only if \(t = \frac{\pi}{2}\)
(2) not invertible for any \(t \in \mathbb{R}\)
(3) invertible for all \(t \in \mathbb{R}\)
(4) invertible only if \(t = \pi\)

Ans. (3)

Sol. \[|A| = e^{-t} \begin{vmatrix} 1 & \cos t & \sin t \\ 2 \sin t & -2 \cos t & 1 \end{vmatrix} = e^{t}(5 \cos^2 t + 5 \sin^2 t) \quad \forall \ t \in \mathbb{R} = 5e^{t} \neq 0 \quad \forall \ t \in \mathbb{R}\]

7. The area of the region \(A = \{(x,y): 0 \leq y \leq x(x+1) \text{ and } -1 \leq x \leq 1\}\) in sq. units, is :

(1) \(\frac{2}{3}\) (2) \(\frac{1}{3}\) (3) 2 (4) \(\frac{4}{3}\)

Ans. (3)

Sol. The graph is as follows:

\[
\int_{-1}^{0} (-x^2 + 1) \, dx + \int_{0}^{1} (x^2 + 1) \, dx = 2
\]
11. The logical statement
\[\neg (\neg p \lor q) \lor (p \land r) \land (\neg q \land r) \]
is equivalent to:
(1) \((p \land r) \land \neg q\)
(2) \(\neg p \land \neg q \land r\)
(3) \(\neg p \lor r\)
(4) \((p \land \neg q) \lor r\)

Ans. (1)

Sol.
\[s[\neg (\neg p \lor q) \land (p \land r) \land (\neg q \land r)] \cap (\neg q \land r) \]
\[= [(p \land \neg q) \lor (p \land r)] \land (\neg q \land r) \]
\[= [p \land (\neg q \lor r)] \land (\neg q \land r) \]
\[= p \land (\neg q \land r) \]
\[= (p \land r) \land \neg q \]

12. An urn contains 5 red and 2 green balls. A ball is drawn at random from the urn. If the drawn ball is green, then a red ball is added to the urn and if the drawn ball is red, then a green ball is added to the urn; the original ball is not returned to the urn. Now, a second ball is drawn at random from it. The probability that the second ball is red, is:

(1) \(\frac{26}{49}\)
(2) \(\frac{32}{49}\)
(3) \(\frac{27}{49}\)
(4) \(\frac{21}{49}\)

Ans. (2)

Sol.
\[E_1 : \text{Event of drawing a Red ball and placing a green ball in the bag} \]
\[E_2 : \text{Event of drawing a green ball and placing a red ball in the bag} \]
\[E : \text{Event of drawing a red ball in second draw} \]

\[P(E) = P(E_1) \times P\left(\frac{E}{E_1}\right) + P(E_2) \times P\left(\frac{E}{E_2}\right) \]
\[= \frac{5}{7} \times \frac{4}{7} + \frac{2}{7} \times \frac{6}{7} = \frac{32}{49} \]

13. If \(0 < x < \frac{\pi}{2}\), then the number of values of \(x\) for which \(\sin x - \sin2x + \sin3x = 0\), is:
(1) 2
(2) 1
(3) 3
(4) 4

Ans. (1)

Sol.
\[\sin x - \sin2x + \sin3x = 0 \]
\[\Rightarrow (\sin x + \sin3x) - \sin2x = 0 \]
\[\Rightarrow 2\sin x \cos x - \sin2x = 0 \]
\[\Rightarrow \sin2x(2\cos x - 1) = 0 \]
\[\Rightarrow \sin2x = 0 \text{ or } \cos x = \frac{1}{2} \]
\[\Rightarrow x = 0, \frac{\pi}{3} \]

14. The equation of the plane containing the straight line \(\frac{x}{2} = \frac{y}{3} = \frac{z}{4}\) and perpendicular to the plane containing the straight lines
\[\frac{x}{3} = \frac{y}{4} = \frac{z}{2} \quad \text{and} \quad \frac{x}{4} = \frac{y}{2} = \frac{z}{3} \]
is:
(1) \(x + 2y - 2z = 0\)
(2) \(x - 2y + z = 0\)
(3) \(5x + 2y - 4z = 0\)
(4) \(3x + 2y - 3z = 0\)

Ans. (2)
Sol. Vector along the normal to the plane containing the lines
\[
\frac{x}{3} = \frac{y}{4} = \frac{z}{2} \quad \text{and} \quad \frac{x}{4} = \frac{y}{2} = \frac{z}{3}
\]
is \(8\hat{i} - \hat{j} - 10\hat{k}\)

vector perpendicular to the vectors \(2\hat{i} + 3\hat{j} + 4\hat{k}\) and \(8\hat{i} - \hat{j} - 10\hat{k}\) is \(26\hat{i} - 52\hat{j} + 26\hat{k}\)

so, required plane is
\[26x - 52y + 26z = 0\]
\[x - 2y + z = 0\]

15. Let the equations of two sides of a triangle be \(3x - 2y + 6 = 0\) and \(4x + 5y - 20 = 0\). If the orthocentre of this triangle is at (1,1), then the equation of its third side is :

(1) \(122y - 26x - 1675 = 0\)
(2) \(26x + 61y + 1675 = 0\)
(3) \(122y + 26x + 1675 = 0\)
(4) \(26x - 122y - 1675 = 0\)

Ans. (4)

Sol. Equation of AB is
\[3x - 2y + 6 = 0\]
equation of AC is
\[4x + 5y - 20 = 0\]
Equation of BE is
\[2x + 3y - 5 = 0\]
Equation of CF is \(5x - 4y - 1 = 0\)

\[⇒ \text{Equation of BC is } 26x - 122y = 1675\]

16. If \(x = 3 \tan t\) and \(y = 3 \sec t\), then the value of \(\frac{d^2y}{dx^2}\) at \(t = \frac{\pi}{4}\), is:

(1) \(\frac{3}{2\sqrt{2}}\)
(2) \(\frac{1}{3\sqrt{2}}\)
(3) \(\frac{1}{6}\)
(4) \(\frac{1}{6\sqrt{2}}\)

Ans. (4)

Sol.
\[
\frac{dx}{dt} = 3\sec^2 t \\
\frac{dy}{dt} = 3\sec t \tan t \\
\frac{dy}{dx} = \tan t \\
\frac{dx}{\sec t} = \cos t \\
\frac{d^2y}{dx^2} = \frac{\cos^3 t}{3\sec^2 t} = \frac{\cos^3 t}{3} = \frac{1}{3.2\sqrt{2}} = \frac{1}{6\sqrt{2}}
\]
20. A hyperbola has its centre at the origin, passes through the point (4,2) and has transverse axis of length 4 along the x-axis. Then the eccentricity of the hyperbola is:

\(\frac{2}{\sqrt{3}} \) (1) \(\frac{3}{2} \) (2) \(\sqrt{3} \) (3) 2 (4) 4

Ans. (1)

Sol. \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \]
\[2a = 4 \quad a = 2 \]
\[\frac{x^2}{4} - \frac{y^2}{b^2} = 1 \]

Passes through (4,2)
\[4 - \frac{4}{b^2} = 1 \Rightarrow b^2 = \frac{3}{2} \Rightarrow e = \frac{2}{\sqrt{3}} \]

21. Let \(A = \{ x \in \mathbb{R} : x \text{ is not a positive integer} \} \)

Define a function \(f : A \rightarrow \mathbb{R} \) as \(f(x) = \frac{2x}{x - 1} \) then \(f \) is
(1) injective but not surjective
(2) not injective
(3) surjective but not injective
(4) neither injective nor surjective

Ans. (1)

Sol. \[f(x) = 2\left(1 + \frac{1}{x - 1}\right) \]
\[f'(x) = -\frac{2}{(x - 1)^2} \]
\[\Rightarrow f \text{ is one-one but not onto} \]

22. If \[f(x) = \int \frac{5x^8 + 7x^6}{x^2 + 2x^4 + 3x^2 + 4x + 5} \text{dx}, \] and \(f(0) = 0 \), then the value of \(f(1) \) is:

\(-\frac{1}{2} \) (1) \(\frac{1}{2} \) (2) \(-\frac{1}{4} \) (3) \(\frac{1}{4} \) (4) \(\frac{1}{4} \)

Ans. (4)

Sol. \[\int \frac{5x^8 + 7x^6}{(x^2 + 1 + 2x^4)^2} \text{dx} = \int \frac{1}{1 + \frac{1}{x^2} + \frac{1}{x^4}} \text{dx} = \frac{1}{2 + \frac{1}{x^2} + \frac{1}{x^4}} + C \]

As \(f(0) = 0 \), \(f(x) = \frac{x^7}{2x^2 + x^2 + 1} \)
\[f(1) = \frac{1}{4} \]

23. If the circles \(x^2 + y^2 + 16x - 20y + 164 = r^2 \) and \((x-4)^2 + (y-7)^2 = 36 \) intersect at two distinct points, then:
(1) \(0 < r < 1 \) (2) \(1 < r < 11 \) (3) \(r > 11 \) (4) \(r = 11 \)

Ans. (2)

Sol. \(x^2 + y^2 - 16x - 20y + 164 = r^2 \)
A(8,10), \(R_1 = r \)
\((x - 4)^2 + (y - 7)^2 = 36 \)
B(4,7), \(R_2 = 6 \)
\[|R_1 - R_2| < AB < R_1 + R_2 \]
\[\Rightarrow 1 < r < 11 \]

24. Let \(S \) be the set of all triangles in the \(xy \)-plane, each having one vertex at the origin and the other two vertices lie on coordinate axes with integral coordinates. If each triangle in \(S \) has area 50 sq. units, then the number of elements in the set \(S \) is:

(1) 9 (2) 18 (3) 32 (4) 36

Ans. (4)

Sol. Let \(A(\alpha,0) \) and \(B(0,\beta) \)
be the vectors of the given triangle AOB
\[\Rightarrow |\alpha\beta| = 100 \]
\[\Rightarrow \text{Number of triangles} \]
\[= 4 \times \text{(number of divisors of 100)} \]
\[= 4 \times 9 = 36 \]

25. The sum of the following series
\[1 + 6 + \frac{9(1^2 + 2^2 + 3^2)}{7} + \frac{12(1^2 + 2^2 + 3^2 + 4^2)}{9} + \frac{15(1^2 + 2^2 + \ldots + 5^2)}{11} + \ldots \text{up to 15 terms}, \text{is:} \]

(1) 7820 (2) 7830 (3) 7520 (4) 7510

Ans. (1)
27. Problem Statement

If the system of linear equations

\[
\begin{align*}
3y - 5z &= h \\
-2x + 5y - 9z &= k
\end{align*}
\]

is consistent, then:

1. \(g + h + k = 0\)
2. \(2g + h + k = 0\)
3. \(g + h + 2k = 0\)
4. \(g + 2h + k = 0\)

Solution

The system is consistent, so the given options do not hold true.

Answer

(2)

28. Problem Statement

Let \(f(x) = f(x) \cdot f(y)\) for all \(x, y, \in [0,1]\), and \(f(0) \neq 0\). If \(y = y(x)\) satisfies the differential equation, \(\frac{dy}{dx} = f(x)\) with \(y(0) = 1\), then

\[
\frac{dy}{dx} = f(x)
\]

is equal to:

1. \(\frac{1}{2}\)
2. \(4\)
3. \(2\)
4. \(\frac{7}{13}\)

Solution

Given \(f(xy) = f(x) \cdot f(y)\) and \(f(0) = 1\), we can integrate to find \(y\).

\[
\frac{dy}{dx} = f(x)
\]

At \(x = 0, y = 1\), then \(y = x + c\), where \(c = 1\), and \(y = x + 1\), which is consistent with the differential equation.

Answer

(2)

29. Problem Statement

A data consists of \(n\) observations:

\[
x_1, x_2, \ldots, x_n.
\]

If \(\sum_{i=1}^{n}(x_i + 1)^2 = 9n\) and \(\sum_{i=1}^{n}(x_i - 1)^2 = 5n\), then the standard deviation of this data is:

1. \(5\)
2. \(\sqrt{5}\)
3. \(\sqrt{7}\)
4. \(2\)

Solution

Using the given formulas, we can calculate the standard deviation.

Answer

(2)
Sol. \[\sum (x_i + 1)^2 = 9n \] \[\sum (x_i - 1)^2 = 5n \]

(1) + (2) \[\Rightarrow \sum (x_i^2 + 1) = 7n \]

\[\Rightarrow \frac{\sum x_i^2}{n} = 6 \]

(1) - (2) \[\Rightarrow 4\Sigma x_i = 4n \]

\[\Rightarrow \Sigma x_i = n \]

\[\Rightarrow \frac{\Sigma x_i}{n} = 1 \]

\[\Rightarrow \text{variance} = 6 - 1 = 5 \]

\[\Rightarrow \text{Standard deviation} = \sqrt{5} \]

30. The number of natural numbers less than 7,000 which can be formed by using the digits 0, 1, 3, 7, 9 (repetition of digits allowed) is equal to:

(1) 250 (2) 374 (3) 372 (4) 375

Ans. (2)

Sol. \[
\begin{array}{c|c|c}
\text{a}_1 & \text{a}_2 & \text{a}_3 \\
\end{array}
\]

Number of numbers = \(5^3 - 1\)

\[
\begin{array}{c|c|c|c}
\text{a}_3 & \text{a}_1 & \text{a}_2 & \text{a}_3 \\
\end{array}
\]

2 ways for \(a_3\)

Number of numbers = \(2 \times 5^3\)

Required number = \(5^3 + 2 \times 5^3 - 1\)

\[= 374\]