1. Two pi and half sigma bonds are present in:
 (1) \(N_2^+\) (2) \(N_2\) (3) \(O_2^+\) (4) \(O_2\)
 Ans. (1)
 Sol.
 \[\text{N}_2 \Rightarrow \text{BO} = 2.5 \Rightarrow \left[\pi - \text{Bond} = 2 & \sigma - \text{Bond} = \frac{1}{2}\right]\]
 \[\text{N}_2^+ \Rightarrow \text{B.O.} = 3.0 \Rightarrow [\pi - \text{Bond} = 2 & \sigma - \text{Bond} = 1]\]
 \[\text{O}_2^+ \Rightarrow \text{B.O.} = 2.5 \Rightarrow [\pi - \text{Bond} = 1.5 & \sigma - \text{Bond} = 1]\]
 \[\text{O}_2 \Rightarrow \text{B.O.} = 2 \Rightarrow [\pi - \text{Bond} = 1 & \sigma - \text{Bond} = 1]\]

2. The chemical nature of hydrogen peroxide is:
 (1) Oxidising and reducing agent in acidic medium, but not in basic medium.
 (2) Oxidising and reducing agent in both acidic and basic medium.
 (3) Reducing agent in basic medium, but not in acidic medium.
 (4) Oxidising agent in acidic medium, but not in basic medium.
 Ans. (2)
 Sol.
 \(\text{H}_2\text{O}_2\) act as oxidising agent and reducing agent in acidic medium as well as basic medium.
 \(\text{H}_2\text{O}_2\) act as oxidant:
 \(\text{H}_2\text{O}_2 + 2\text{H}^+ + 2\text{e}^- \rightarrow 2\text{H}_2\text{O}\) (In acidic medium)
 \(\text{H}_2\text{O} + 2\text{e}^- \rightarrow 2\text{OH}^-\) (In basic medium)
 \(\text{H}_2\text{O}_2\) act as reactant:
 \(\text{H}_2\text{O}_2 \rightarrow 2\text{H}^+ + \text{O}_2 + 2\text{e}^\circ\) (In acidic medium)
 \(\text{H}_2\text{O}_2 + 2\text{OH}^- \rightarrow 2\text{H}_2\text{O} + \text{O}_2 + 2\text{e}^-\) (In basic medium)

3. Which dicarboxylic acid in presence of a dehydrating agent is least reactive to give an anhydride:
 (1) \(\text{COOH} \quad \text{COOH}\)
 (2) \(\text{CH}_2\text{COOH}\)
 (3) \(\text{COOH} \quad \text{COOH}\)
 (4) \(\text{CH}_2\text{CH}_2\text{OH}\)
 Ans. (4)
 Sol. Adipic acid \(\text{CO}_2\text{H}-(\text{CH}_2)_4-\text{CO}_2\text{H}\) \(\xrightarrow{\text{ contining agent}}\) 7 membered cyclic anhydride (Very unstable)

4. Which primitive unit cell has unequal edge lengths \((a \neq b \neq c)\) and all axial angles different from \(90^\circ\)?
 (1) Tetragonal (2) Hexagonal
 (3) Monoclinic (4) Triclinic
 Ans. (4)
 Sol. In Triclinic unit cell \(a \neq b \neq c\) & \(\alpha \neq \beta \neq \gamma \neq 90^\circ\)

5. Wilkinson catalyst is:
 (1) \([\text{Ph}_3\text{P}]_3\text{RhCl}\) (Et = \(\text{C}_2\text{H}_5\))
 (2) \([\text{Et}_3\text{P}]_3\text{IrCl}\)
 (3) \([\text{Et}_3\text{P}]_2\text{RhCl}\)
 (4) \([\text{Ph}_3\text{P}]_3\text{IrCl}\)
 Ans. (1)
 Sol. Wilkinson catalyst is \([\text{Ph}_3\text{P}]_3\text{RhCl}\)

6. The total number of isotopes of hydrogen and number of radioactive isotopes among them, respectively, are:
 (1) 2 and 0 (2) 3 and 2
 (3) 3 and 1 (4) 2 and 1
 Ans. (3)
 Sol. Total number of isotopes of hydrogen is 3
 \(\Rightarrow \overset{1}{1}\text{H}, \overset{2}{2}\text{H} \text{ or } \overset{3}{3}\text{H} \text{ or } \overset{3}{3}\text{T}\)
 and only \(\overset{1}{1}\text{H}\) or \(\overset{3}{3}\text{T}\) is an Radioactive element.

7. The major product of the following reaction is
 \(\text{Br} \quad \text{Br}\)
 \(\text{Ph}\)
 \(\text{KOH alc (excess)} \Delta\)
 (1) (2) (3) (4)
 Ans. (3)
8. The total number of isomers for a square planar complex \([\text{M(F)}(\text{Cl})(\text{SCN})(\text{NO}_2)])\) is:

(1) 12 (2) 8 (3) 16 (4) 4

Ans. (1)

Sol. The total number of isomers for a square planar complex \([\text{M(F)}(\text{Cl})(\text{SCN})(\text{NO}_2)])\) is 12.

9. Hall-Heroult’s process is given by "

(1) \(\text{Cr}_2\text{O}_3 + 2\text{Al} \rightarrow \text{Al}_2\text{O}_3 + 2\text{Cr}\)

(2) \(\text{Cu}^{2+} (\text{aq.}) + \text{H}_2(\text{g}) \rightarrow \text{Cu(s)} + 2\text{H}^+ (\text{aq})\)

(3) \(\text{ZnO} + \text{C} \xrightarrow{\text{Coke, 1673K}} \text{Zn} + \text{CO}\)

(4) \(2\text{Al}_2\text{O}_3 + 3\text{C} \rightarrow 4\text{Al} + 3\text{CO}_2\)

Ans. (4)

Sol. In Hall-Heroult’s process is given by

\[2\text{Al}_2\text{O}_3 + 3\text{C} \rightarrow 4\text{Al} + 3\text{CO}_2\]

\[2\text{Al}_2\text{O}_3(\ell) \rightarrow 4\text{Al}^{3+}(\ell) + 6\text{O}^{2-}(\ell)\]

At cathode \(-\): 4Al\(^{3+}(\ell)\) + 12e\(^\oplus\) → 4Al\((\ell)\)

At Anode : \(6\text{O}^{2-}(\ell) \rightarrow 3\text{O}_2(\text{g}) + 12\text{e}^\oplus\)

3C + 3O\(_2\) → 3CO\(_2\) \((\uparrow)\)

10. The value of \(K_p/K_C\) for the following reactions at 300K are, respectively:

(At 300K, \(RT = 24.62\ \text{dm}^3\text{atm mol}^{-1}\))

\(\text{N}_2(\text{g}) + \text{O}_2(\text{g}) \rightleftharpoons 2\text{NO}(\text{g})\)

\(\text{N}_2\text{O}_4(\text{g}) \rightleftharpoons 2\text{NO}_2(\text{g})\)

\(\text{N}_2(\text{g}) + 3\text{H}_2(\text{g}) \rightleftharpoons 2\text{NH}_3(\text{g})\)

(1) \(1.2462 \ \text{dm}^3\text{atm mol}^{-1}\), \(606.0 \ \text{dm}^6\text{atm}^{-2}\text{mol}^{-2}\)

(2) \(1.41 \times 10^{-2} \ \text{dm}^3\text{atm}^{-1}\text{mol}^{-1}\), \(606.0 \ \text{dm}^6\text{atm}^{-2}\text{mol}^{-2}\)

(3) \(606.0 \ \text{dm}^6\text{atm}^{-2}\text{mol}^{-2}\), \(1.65 \times 10^{-3} \ \text{dm}^6\text{atm}^{-2}\text{mol}^{-1}\)

(4) \(1.2462 \ \text{dm}^3\text{atm mol}^{-1}\), \(1.65 \times 10^{-3} \ \text{dm}^6\text{atm}^{-2}\text{mol}^{-2}\)

Ans. (4)

Sol. \(\text{N}_2(\text{g}) + \text{O}_2(\text{g}) \rightleftharpoons 2\text{NO}(\text{g})\)

\[\frac{k_p}{k_c} = \frac{(RT)^{n_i}}{(RT)^0} = 1\]

\(\text{N}_2\text{O}_4(\text{g}) \rightleftharpoons 2\text{NO}_2(\text{g})\)

\[\frac{k_p}{k_c} = (RT)^1 = \frac{1}{(RT)^0} = 24.62\]

\(\text{N}_2(\text{g}) + 3\text{H}_2(\text{g}) \rightleftharpoons 2\text{NH}_3(\text{g})\)

\[\frac{k_p}{k_c} = (RT)^{-2} = \frac{1}{(RT)^2} \times 1.65 \times 10^{-3}\]

11. If dichloromethane (DCM) and water (H\(_2\)O) are used for differential extraction, which one of the following statements is correct?

(1) DCM and H\(_2\)O would stay as lower and upper layer respectively in the S.F.

(2) DCM and H\(_2\)O will be miscible clearly

(3) DCM and H\(_2\)O would stay as upper and lower layer respectively in the separating funnel (S.F.)

(4) DCM and H\(_2\)O will make turbid/colloidal mixture

Ans. (1)

12. The type of hybridisation and number of lone pair(s) of electrons of Xe in XeOF\(_4\), respectively, are:

(1) sp\(^3\)d and 1

(2) sp\(^3\)d and 2

(3) sp\(^3\)d\(^2\) and 1

(4) sp\(^3\)d\(^2\) and 2

Ans. (3)

Sol. \(\text{sp}^3\text{d}^2 \Rightarrow [5\sigma\text{-bond} + 1\ \text{l.p.}]\)

13. The metal used for making X-ray tube window is:

(1) Mg (2) Na (3) Ca (4) Be

Ans. (4)

Sol. “Be” Metal is used in x-ray window is due to transparent to x-rays.
14. Consider the given plots for a reaction obeying Arrhenius equation \((0°C < T < 300°C)\) : \((k \text{and} \ E_a \text{ are rate constant and activation energy, respectively})\)

\[
\begin{align*}
\text{Ea} & \quad \text{T(°C)} \\
\text{I} & \\
\text{II} &
\end{align*}
\]

Choose the correct option :
(1) Both I and II are wrong
(2) I is wrong but II is right
(3) Both I and II are correct
(4) I is right but II is wrong

Ans. (4)

Sol. On increasing \(E_a\), \(K\) decreases

15. Water filled in two glasses A and B have BOD values of 10 and 20, respectively. The correct statement regarding them, is :
(1) A is more polluted than B
(2) A is suitable for drinking, whereas B is not
(3) B is more polluted than A
(4) Both A and B are suitable for drinking

Ans. (3)

Sol. Two glasses "A" and "B" have BOD values 10 and "20", respectively.
Hence glasses "B" is more polluted than glasses "A".

16. The increasing order of the pKa values of the following compounds is :

\[
\begin{align*}
\text{A} & \quad \text{OH} & \quad \text{B} & \quad \text{OH} \\
\text{C} & \quad \text{OH} & \quad \text{OMe} & \quad \text{D} \\
\text{NO}_2 & \quad \text{NO}_2 & \quad \text{OH}
\end{align*}
\]

(1) \(D < A < C < B\)
(2) \(B < C < D < A\)
(3) \(C < B < A < D\)
(4) \(B < C < A < D\)

Ans. (4)

Sol. Acidic strength is inversely proportional to pka.

17. Liquids A and B form an ideal solution in the entire composition range. At 350 K, the vapor pressures of pure A and pure B are \(7 \times 10^3\) Pa and \(12 \times 10^3\) Pa, respectively. The composition of the vapor in equilibrium with a solution containing 40 mole percent of A at this temperature is :

(1) \(x_A = 0.37; \ x_B = 0.63\)
(2) \(x_A = 0.28; \ x_B = 0.72\)
(3) \(x_A = 0.76; \ x_B = 0.24\)
(4) \(x_A = 0.4; \ x_B = 0.6\)

Ans. (2)

Sol. \(y_A = \frac{P_A}{P_{total}} = \frac{P_A^e x_A}{P_A^e x_A \times P_B^e x_B}\)

\[
\begin{align*}
&= \frac{7 \times 10^3 \times 0.4}{7 \times 10^3 \times 0.4 + 12 \times 10^3 \times 0.6} \\
&= \frac{2.8}{10} = 0.28 \\
y_B &= 0.72
\end{align*}
\]

18. Consider the following reduction processes :

\[
\begin{align*}
\text{Zn}^{2+} + 2e^- & \rightarrow \text{Zn(s)}; \ E^o = -0.76 \text{ V} \\
\text{Ca}^{2+} + 2e^- & \rightarrow \text{Ca(s)}; \ E^o = -2.87 \text{ V} \\
\text{Mg}^{2+} + 2e^- & \rightarrow \text{Mg(s)}; \ E^o = -2.36 \text{ V} \\
\text{Ni}^{2+} + 2e^- & \rightarrow \text{Ni(s)}; \ E^o = -0.25 \text{ V}
\end{align*}
\]

The reducing power of the metals increases in the order :

(1) \(\text{Ca} < \text{Zn} < \text{Mg} < \text{Ni}\)
(2) \(\text{Ni} < \text{Zn} < \text{Mg} < \text{Ca}\)
(3) \(\text{Zn} < \text{Mg} < \text{Ni} < \text{Ca}\)
(4) \(\text{Ca} < \text{Mg} < \text{Zn} < \text{Ni}\)

Ans. (2)

Sol. Higher the oxidation potential better will be reducing power.
19. The major product of the following reaction is:

\[
\text{CH}_3\text{Cl} \xrightarrow{(i) \text{AlCl}_3 (\text{anhyd.}) \quad (ii) \text{H}_2\text{O}} \text{CH}_2\text{Cl} \quad \text{CH}_2\text{Cl} \quad \text{CH}_3\text{Cl} \quad \text{CH}_2\text{Cl}
\]

\(\text{(1)} \quad \text{CH}_3\text{Cl} \quad \text{CH}_2\text{Cl} \quad \text{CH}_3\text{Cl} \quad \text{CH}_2\text{Cl} \)

\(\text{CH}_3\text{Cl} \quad \text{CH}_2\text{Cl} \quad \text{CH}_3\text{Cl} \quad \text{CH}_2\text{Cl} \)

\(\text{CH}_3\text{Cl} \quad \text{CH}_2\text{Cl} \quad \text{CH}_3\text{Cl} \quad \text{CH}_2\text{Cl} \)

\(\text{CH}_3\text{Cl} \quad \text{CH}_2\text{Cl} \quad \text{CH}_3\text{Cl} \quad \text{CH}_2\text{Cl} \)

Ans. (2)

Sol.

\[
\text{CH}_3\text{Cl} \xrightarrow{(i) \text{AlCl}_3 (\text{H}_2\text{O}} \text{CH}_2\text{Cl} \quad \text{CH}_2\text{Cl} \quad \text{CH}_3\text{Cl} \quad \text{CH}_2\text{Cl}
\]

1,2 shift of \(\text{H}^- \)

intra F.C.A.

20. The electronegativity of aluminium is similar to:

(1) Boron
(2) Carbon
(3) Lithium
(4) Beryllium

Ans. (4)

Sol. E.N. of Al = (1.5) \(\geq \) Be (1.5)

21. The decreasing order of ease of alkaline hydrolysis for the following esters is:

\[
\begin{align*}
\text{I} & : \text{COOC}_2\text{H}_5 \\
\text{II} & : \text{Cl-CH}_2\text{COOC}_2\text{H}_5 \\
\text{III} & : \text{NO}_2\text{-CH}_2\text{COOC}_2\text{H}_5 \\
\text{IV} & : \text{CH}_3\text{O-COOC}_2\text{H}_5
\end{align*}
\]

\(\text{I} \quad \text{II} \quad \text{III} \quad \text{IV} \)

\(\text{I} \quad \text{II} \quad \text{III} \quad \text{IV} \)

\(\text{I} \quad \text{II} \quad \text{III} \quad \text{IV} \)

\(\text{I} \quad \text{II} \quad \text{III} \quad \text{IV} \)

Ans. (2)

Sol. More is the electrophilic character of carbonyl group of ester faster is the alkaline hydrolysis.

22. A process has \(\Delta H = 200 \text{ Jmol}^{-1} \) and \(\Delta S = 40 \text{ JK}^{-1}\text{mol}^{-1} \). Out of the values given below, choose the minimum temperature above which the process will be spontaneous:

(1) 5 K
(2) 4 K
(3) 20 K
(4) 12 K

Ans. (1)

Sol. \(\Delta G = \Delta H - T \Delta S \)

\[
T = \frac{\Delta H}{\Delta S} = \frac{200}{40} = 5\text{K}
\]
23. Which of the graphs shown below does not represent the relationship between incident light and the electron ejected from metal surface?

(1) number of e’s

(2) K.E. of e’s

(3) K.E. of e’s

(4) K.E. of e’s

Ans. (3)

Sol. \[E = W + \frac{1}{2}mv^2 \]
\[\text{K.E.} = hv - 4v_0 \]
\[\text{K.E.} = hv + (-hv_0) \]
\[y = mx + C \]

24. Which of the following is not an example of heterogeneous catalytic reaction?

(1) Ostwald’s process
(2) Haber’s process
(3) Combustion of coal
(4) Hydrogenation of vegetable oils

Ans. (3)

Sol. Then is no catalyst is required for combustion of coal.

25. The effect of lanthanoid contraction in the lanthanoid series of elements by and large means:

(1) decrease in both atomic and ionic radii
(2) increase in atomic radii and decrease in ionic radii
(3) increase in both atomic and ionic radii
(4) decrease in atomic radii and increase in ionic radii

Ans. (1)

Sol. Due to Lanthanoid contraction both atomic radii and ionic radii decreases gradually in the lanthanoid series.

26. The major product formed in the reaction given below will be:

\[\text{NH}_2 + 2\text{NaNO}_2 + \text{HCl}, 0.5 \text{C} \xrightarrow{\text{aq HCl/O-5'C}} \]

(1) \(\text{NO}_2 \)
(2) \(\text{OH} \)
(3) \(\text{NH}_2 \)
(4) \(\text{NO}_2 \)

Ans. (Bonus)

Sol. Answer should be \(\text{OH} \)
27. The correct structure of product 'P' in the following reaction is:

\[\text{Asn-Ser} + (\text{CH}_3\text{CO})_2\text{O} \xrightarrow{(\text{excess}) \text{NH}_3} \text{P} \]

(1) \[\text{O} \]

(2) \[\text{O} \]

(3) \[\text{O} \]

(4) \[\text{O} \]

Ans. (1)

Sol. Asn–Ser is dipeptide having following structure

\[\text{NH}_2 \quad \text{C} \quad \text{C} \quad \text{C} \quad \text{NH} \quad \text{CH} \quad \text{CO}_2\text{H} \]

\[\text{O} \quad \text{C} \quad \text{H}_2 \quad \text{C} \quad \text{O}_2\text{H} \]

\[\text{CH}_3 \quad \text{CO}_2\text{H} \]

\[\text{CO} \quad \text{CH}_3 \quad \text{COOCH}_3 \]

\[\text{Asn – Ser} + (\text{CH}_3\text{CO})_2\text{O} \xrightarrow{(\text{excess}) \text{NH}_3} \text{P} \]

P is

28. Which hydrogen in compound (E) is easily replaceable during bromination reaction in presence of light:

\[\text{CH}_3 – \text{CH}_2 – \text{CH} = \text{CH}_2 \]

(1) \(\beta \) – hydrogen
(2) \(\gamma \) – hydrogen
(3) \(\delta \) – hydrogen
(4) \(\alpha \) – hydrogen

Ans. (2)

29. The major product 'X' formed in the following reaction is:

\[\text{O} \quad \text{CH} \quad \text{CH} \quad \text{CH} \quad \text{CH} \quad \text{O} \xrightarrow{\text{NaBH}_3, \text{MeOH}} \text{X} \]

(1) \[\text{O} \quad \text{CH} \quad \text{CH} \quad \text{CH} \quad \text{CH} \quad \text{O} \]

(2) \[\text{O} \quad \text{CH} \quad \text{CH} \quad \text{CH} \quad \text{CH} \quad \text{O} \]

(3) \[\text{O} \quad \text{CH} \quad \text{CH} \quad \text{CH} \quad \text{CH} \quad \text{O} \]

(4) \[\text{O} \quad \text{CH} \quad \text{CH} \quad \text{CH} \quad \text{CH} \quad \text{O} \]

Ans. (4)
30. A mixture of 100 m mol of Ca(OH)$_2$ and 2 g of sodium sulphate was dissolved in water and the volume was made up to 100 mL. The mass of calcium sulphate formed and the concentration of OH$^-$ in resulting solution, respectively, are: (Molar mass of Ca(OH)$_2$, Na$_2$SO$_4$ and CaSO$_4$ are 74, 143 and 136 g mol$^{-1}$, respectively; K_{sp} of Ca(OH)$_2$ is 5.5×10^{-6})

(1) 1.9 g, 0.14 mol L$^{-1}$
(2) 13.6 g, 0.14 mol L$^{-1}$
(3) 1.9 g, 0.28 mol L$^{-1}$
(4) 13.6 g, 0.28 mol L$^{-1}$

Ans. (3)

Sol. Ca(OH)$_2$ + Na$_2$SO$_4$ → CaSO$_4$ + 2NaOH

\[
\begin{array}{ccc}
100 \text{ m mol} & 14 \text{ m mol} & \text{—} \\
— & — & 14 \text{ m mol} & 28 \text{ m mol}
\end{array}
\]

\[w_{\text{CaSO}_4} = 14 \times 10^{-3} \times 136 = 1.9 \text{ gm}\]

\[\text{[OH}^-] = \frac{28}{100} = 0.28 \text{M}\]