Memory Based Questions & Solutions

PAPER (पेपर)- 1 | SUBJECT : MATHEMATICS

PAPER-1 : INSTRUCTIONS TO CANDIDATES

- Question Paper-1 has three (03) parts: Physics, Chemistry and Mathematics.
- Each part has a total eighteen (18) questions divided into three (03) sections (Section-1, Section-2 and Section-3).
- Total number of questions in Question Paper-1 are Fifty Four (54) and Maximum Marks are One Hundred Eighty Six (186)

Type of Questions and Marking Schemes

SECTION-1 (Maximum Marks : 12)

- This section contains FOUR (04) questions.
- Each question has FOUR options. ONLY ONE of these four options is the correct answer.
- For each question, choose the correct option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme:

<table>
<thead>
<tr>
<th>Full Marks</th>
<th>Partial Marks</th>
<th>Zero Marks</th>
<th>Negative Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>+3</td>
<td>+1</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>(IF ONLY the correct option is chosen)</td>
<td>(IF the correct option is chosen)</td>
<td>(IF none of the options chosen)</td>
<td>(In all other cases)</td>
</tr>
</tbody>
</table>

SECTION-2 (Maximum Marks : 32)

- This section contains EIGHT (08) questions.
- Each question has FOUR options. ONE OR MORE THAN ONE of these four option(s) is (are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme:

<table>
<thead>
<tr>
<th>Full Marks</th>
<th>Partial Marks</th>
<th>Zero Marks</th>
<th>Negative Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>+4</td>
<td>+3</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>(IF only the correct option(s) is (are) chosen)</td>
<td>(IF all the four options are correct but ONLY three options are chosen)</td>
<td>(IF none of the options chosen)</td>
<td>(In all other cases)</td>
</tr>
</tbody>
</table>

SECTION-3 (Maximum Marks : 18)

- This section contains SIX (06) questions. The answer to each question is a NUMERICAL VALUE.
- For each question, enter the correct numerical value of the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer. If the numerical value has more than two decimal places truncate/round-off the value to TWO decimal places.
- Answer to each question will be evaluated according to the following marking scheme:

<table>
<thead>
<tr>
<th>Full Marks</th>
<th>Zero Marks</th>
<th>Negative Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>+3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(IF ONLY the correct numerical value is entered)</td>
<td>(In all other cases)</td>
<td></td>
</tr>
</tbody>
</table>

Answering Questions:

- To select the option(s), use the mouse to click on the corresponding button(s) of the option(s).
- To deselect the chosen option for the questions of SECTION-1, click on the button of the chosen option again or click on the Clear button.
Response button to clear the chosen option.

- To deselect the chosen option(s) for the questions of SECTION-2, click on the button(s) of the chosen option(s) again or click on the Clear Response button to clear all the chosen options.

- To change the option(s) of a previously answered question of SECTION-1 and SECTION-2 first deselect as given above and then select the new option(s).

- To answer questions of SECTION-3, use the mouse to click on numbers (and/or symbols) on the on-screen virtual numeric keypad to enter the numerical value in the space provided for answer.

- To change the answer of a question of SECTION-3, first click on the Clear Response button to clear the entered answer and then enter the new numerical value.

- To mark a question ONLY for review (i.e. without answering it), click on the Mark for Review & Next button.

- To mark a question for review (after answering it), click on Mark for Review & Next button – the answered question which is also marked for review will be evaluated.

- To save the answer, click on the Save & Next button – the answered question will be evaluated.
PART-III: MATHEMATICS

SECTION-1 (Maximum Marks : 12)

- This section contains FOUR (04) questions.
- Each question has FOUR options ONLY ONE of these four options is the correct answer.
- For each question, choose the correct option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme:

 Full Marks : +3 if ONLY the correct option is chosen.
 Zero Marks : 0 if none of the options is chosen (i.e. the question is unanswered).
 Negative Marks : -1 in all other cases.

1. A line $y = mx + 1$ meets the circle $(x - 3)^2 + (y + 2)^2 = 25$ at points P and Q. If mid point of PQ has abscissa of $-\frac{3}{5}$, then value of m satisfies

 एक रेखा $y = mx + 1$ गुण ($(x - 3)^2 + (y + 2)^2 = 25$) को P तथा Q बिंदुओं पर काटती है। यदि PQ का मध्य सिर्फ $-\frac{3}{5}$ का भूमि होता है तब m सम्पूर्ण होता है।

 (A) $6 \leq m < 8$
 (B) $2 \leq m < 4$
 (C) $-3 \leq m < -1$
 (D) $4 \leq m < 6$

 Ans.
 (B)

 Sol.

 For point R, $x = \frac{-3}{5}$
 $y = 1 - \frac{3m}{5}$

 $R\left(\frac{-3}{5}, 1 - \frac{3m}{5}\right)$

 slope of $CR = \frac{\frac{-3m}{5} + 2}{\frac{-3}{5} - \frac{1}{m}}$
 $= \frac{15 - 3m}{-3 - 15 + \frac{m}{m}}

 15m - 3m^2 = 18

 $m^2 - 5m + 6 = 0$

 $m = 2, 3$

 $2 \leq m \leq 4$
2. If \(z \) is a complex number belonging to the set \(S = \{ z : |z - 2 + i| \geq \sqrt{5} \} \) and \(z_0 \in S \) such that \(\frac{1}{|z_0 - 1|} \) is maximum. Then \(\arg \left(\frac{4 - z_0 - \bar{z}_0}{z_0 - \bar{z}_0 + 2i} \right) \) is

\[\arg \left(\frac{4 - z_0 - \bar{z}_0}{z_0 - \bar{z}_0 + 2i} \right) \]

\(\text{Ans.} \: \frac{\pi}{4} \)

\(\text{Sol.} \: C \)

3. For \(z_0 - 1 \) to be minimum, \(z_0 = x_0 + iy_0 \) is at point P as shown in figure

\(\arg \left(\frac{4 - (z_0 - \bar{z}_0)}{2y + 2i} \right) = \arg \left(\frac{4 - 2x}{y + 2} \right) = -\frac{\pi}{2} \)

\(\text{Ans.} \: A \)

\(\text{Sol.} \:

\[\begin{align*}
|z - (2 - i)| & \geq \sqrt{5} \\
\text{For } z_0 - 1 	ext{ to be minimum, } z_0 = x_0 + iy_0 \text{ is at point P as shown in figure} \\
\arg \left(\frac{4 - (z_0 - \bar{z}_0)}{2y + 2i} \right) & = \arg \left(\frac{4 - 2x}{y + 2} \right) = \frac{\pi}{2} \quad (\therefore x > 0)
\end{align*} \)

Area bounded the points \((x, y)\) in cartesian plane satisfying \(xy \leq 8\) and \(1 \leq y \leq x^2\) will be

\(\text{Ans.} \: \frac{16}{n^2} - \frac{14}{3} \)

\(\text{Sol.} \:

\begin{align*}
xy & \leq 8 \\
1 & \leq y \leq x^2 \\
x^2 \cdot x & = 8 \\
x & = 2
\end{align*} \)
4. \[M = \begin{bmatrix} \sin^4 \theta & 1 - \sin^2 \theta \\ 1 + \cos^2 \theta & \cos^4 \theta \end{bmatrix} - \alpha I + \beta M^{-1} \]

Where \(\alpha = \alpha (\theta) \) and \(\beta = \beta (\theta) \) are real numbers and I is an identity matrix of 2x2.
If \(\alpha^* = \text{Min of set } \{ \alpha(\theta) : \theta \in [0,2\pi] \} \)
And \(\beta^* = \text{Min of set } \{ \beta(\theta) : \theta \in [0,2\pi] \} \)
Then value of \(\alpha^* + \beta^* \) is
\[M = \begin{bmatrix} \sin^4 \theta & 1 - \sin^2 \theta \\ 1 + \cos^2 \theta & \cos^4 \theta \end{bmatrix} - \alpha I + \beta M^{-1} \]

\(\alpha^* = \alpha (\theta) \) and \(\beta^* = \beta (\theta) \) वास्तविक संख्याएं हैं। एक 2x2 का तत्समक आयतन है।
विधि \(\alpha^* = \text{मुख्यांक } \{ \alpha(\theta) : \theta \in [0,2\pi] \} \) का न्यूनतम
एवं \(\beta^* = \text{सह-मुख्यांक } \{ \beta(\theta) : \theta \in [0,2\pi] \} \) का न्यूनतम
tबने \(\alpha^* + \beta^* \) का मान लेंगे।

(A) \(-\frac{37}{16}\) (B) \(-\frac{17}{16}\) (C) \(-\frac{31}{16}\) (D) \(-\frac{29}{16}\)

Ans. (D)
Sol. \[m = \sin^4 \theta + \cos^4 \theta + (1 + \sin^2 \theta)(1 + \cos^2 \theta) \]
\[2 + \sin^4 \theta + \cos^4 \theta = \begin{bmatrix} \sin^4 \theta & 1 - \sin^2 \theta \\ 1 + \cos^2 \theta & \cos^4 \theta \end{bmatrix} - \alpha I + \beta M^{-1} \]
\[\begin{bmatrix} \sin^4 \theta & 1 - \sin^2 \theta \\ 1 + \cos^2 \theta & \cos^4 \theta \end{bmatrix} - \begin{bmatrix} \alpha & 0 \\ 0 & \alpha \end{bmatrix} + \beta \begin{bmatrix} \cos^4 \theta & 1 - \sin^2 \theta \\ -\cos^4 \theta & \sin^4 \theta \end{bmatrix} \]
\[\sin^4 \theta = \frac{\alpha + \beta}{\alpha} \cos^4 \theta, -1 - \sin^2 \theta = \frac{\beta}{\alpha} (1 + \sin^2 \theta) \]
\[\beta = -\alpha \]
\[\beta = -[\sin^4 \cos^4 + \sin^4 \cos^4 + 2] = -[\alpha + 2] \Rightarrow \beta = -\frac{37}{16} \]
5. \[a_n = \frac{\alpha^n - \beta^n}{\alpha - \beta} \] where \(\alpha \) and \(\beta \) are roots of equation \(x^2 - x - 1 = 0 \) and \(b_n = a_{n+1} - a_n \). Then

\[(A) \ b_n = \alpha^{n+1} + \beta^n \quad (B) \ \sum_{n=1}^{\infty} \frac{b_n}{10^n} = \frac{8}{99} \quad (C) \ \sum_{n=1}^{\infty} \frac{a_n}{10^n} = \frac{10}{99} \quad (D) \ a_1 + a_2 + \ldots + a_n = a_{n+1} - 1 \]

Answ. (ACD)

Sol. (A) \[b_n = \alpha^{n+1} + \beta^n \]

\[\frac{a_n}{\alpha - \beta} = \frac{\alpha^{n+1} - \beta^{n+1}}{\alpha - \beta} = \frac{(\alpha^2 + 1) - \beta^{n+1}(\beta^2 + 1)}{\alpha - \beta} \]

\[\frac{\alpha^{n+1}}{\alpha - \beta} = \frac{5 + \sqrt{5}}{2} \]

\[\frac{\beta^n}{\alpha - \beta} = \frac{5 - \sqrt{5}}{2} \]

\[a_n = \frac{\sqrt{5} \alpha^n + \sqrt{5} \beta^n}{\alpha - \beta} = \alpha^n + \beta^n \]

\[\sum_{n=1}^{\infty} \frac{b_n}{10^n} = \sum_{n=1}^{\infty} \frac{\alpha^n}{10} - \sum_{n=1}^{\infty} \frac{\beta^n}{10} = \frac{10}{1 - \alpha/10} - \frac{10}{1 - \beta/10} = \frac{\alpha}{10 - \alpha} + \frac{\beta}{10 - \beta} \]

\[\frac{10(\alpha + \beta) - 20}{100 - 10(\alpha + \beta) + 10\alpha} = \frac{10}{100} = \frac{12}{99} \]

\[\sum_{n=1}^{\infty} \frac{a_n}{10^n} = \sum_{n=1}^{\infty} \frac{a_n}{(\alpha - \beta)10^n} = \frac{1}{\alpha - \beta} \left(\frac{\alpha}{10} - \frac{\alpha}{10} \right) = \frac{1}{\alpha - \beta} \left(\frac{1}{10} - \frac{1}{10} \right) = \frac{1}{\alpha - \beta} \left(\frac{1}{10} - \frac{1}{10} \right) = \frac{10}{99} \]

Option (C) is correct.

6. If a matrix \(M \) is given by \[
\begin{bmatrix}
0 & 1 & 2 \\
1 & 2 & 3
\end{bmatrix}
\]
and if \(M = \begin{bmatrix} 2 & 1 \\ 3 & 3 \end{bmatrix} \), then

\[\text{adj}(M^3) + (\text{adj}M)^3 = -M \]

\[a + 2b + \gamma = 2 \]

\[a + 2b + \gamma = 3 \]

\[a = 1, \quad b = -2, \quad \gamma = 1 \]

\[|M| = -2 \]

\[|\text{adj}M| = |M|^2 = |M|^4 = 16 \]

\[|\text{adj}(M^3)| = |M^3| = -M \]

Answ. (AC)

Sol. \[
\begin{bmatrix}
0 & 1 & 2 \\
1 & 3 & 1 \\
3 & 1 & 1
\end{bmatrix}
\]

\[\Rightarrow b + 2 \gamma = 1 \]

\[a + 2b + \gamma = 2 \]

\[3a + b + \gamma = 3 \]

\[a = 1, \quad b = -1, \quad \gamma = 1 \]

\[|M| = -2 \]

\[|\text{adj}M| = |M|^2 = |M|^4 = 16 \]

\[|\text{adj}(M^3)| = |M^3| = -M \]
7. There are three bags B_1, B_2, B_3. B_1 contains 5 red and 5 green balls. B_2 contains 3 red and 5 green balls and B_3 contains 5 red and 3 green balls. Bags B_1, B_2, and B_3 have probabilities $\frac{3}{10}$, $\frac{3}{10}$, and $\frac{4}{10}$ respectively of being chosen. A bag is selected at random and a ball is randomly chosen from the bag. Then which of the following options is/are correct?

(A) Probability that the chosen ball is green equals $\frac{39}{80}$

(B) Probability that the chosen ball is green, given that the selected bag is B_1, equals $\frac{3}{8}$

(C) Probability that the selected bag is B_3, given that the chosen ball is green, equals $\frac{4}{13}$

(D) Probability that the selected bag is B_3, given that the chosen ball is green, equals $\frac{3}{10}$

Resonance Eduventures Limited

REGISTERED & CORPORATE OFFICE: CG Tower, A-46 & 52, IP (East), Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph.No.: 0744-2777777, 0744-2777700; **Toll-Free**: 1800 258 5555 | **Fax No.**: +91-029-28916722 | **To Know more**: visit RESONANCE at 56077
Website: www.resonance.ac.in | **E-mail**: contact@resonance.ac.in | **CIN**: U80302RJ2007PLC024029
Toll Free: 1800 258 5555 | **Pan No.**: 09417100133 | 09417100134

This solution was downloaded from Resonance JEE (ADVANCED) 2019 Solution portal PAGE # 5

JEE (ADVANCED) 2019 | DATE : 27-05-2019 | PAPER-1 | MEMORY BASED | MATHEMATICS

There are three bags: B_1, B_2, B_3. B_1 has 5 red and 5 green balls. B_2 has 3 red and 5 green balls, and B_3 has 5 red and 3 green balls. Each bag has a probability of being chosen: $\frac{3}{10}$, $\frac{3}{10}$, and $\frac{4}{10}$.

(A) The probability of selecting a red ball from B_1 is $\frac{39}{80}$.

(B) The probability of selecting a red ball from B_3 is $\frac{3}{8}$.

(C) The probability of selecting a green ball from B_2 is $\frac{4}{13}$.

(D) The probability of selecting a bag with at least one green ball is $\frac{3}{10}$.

Ans. Sol.

<table>
<thead>
<tr>
<th>Bag 1</th>
<th>Bag 2</th>
<th>Bag 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red Balls</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Green Balls</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
<td>8</td>
</tr>
</tbody>
</table>

(A) \(P(\text{Ball is Green}) = P(B_1)P(G/B_1) + P(B_2)P(G/B_2) + P(B_3)P(G/B_3) \)

\[= \frac{3}{10} \cdot \frac{5}{10} + \frac{3}{10} \cdot \frac{5}{10} + \frac{4}{10} \cdot \frac{3}{10} = \frac{39}{80} \]

(B) \(P(\text{Ball chosen is Green} | \text{Ball is from 3rd Bag}) = \frac{3}{8} \)

(C) \(P(\text{Ball is from 3rd Bag | Ball chosen is Green}) \)

\[= \frac{P(B_3)P(G/B_3)}{P(B_1)P(G/B_1) + P(B_2)P(G/B_2) + P(B_3)P(G/B_3)} \]

\[= \frac{\frac{3}{10}}{\frac{39}{80}} = \frac{4}{10} \]

\[= \frac{4}{10} \cdot \frac{3}{10} + \frac{3}{10} \cdot \frac{5}{10} + \frac{4}{10} \cdot \frac{3}{10} = \frac{4}{13} \]
8. Let \(L_1 \) and \(L_2 \) denote the lines \(\vec{r} = \vec{a} + \lambda(\vec{b} \times \vec{c}) \), \(\lambda \in \mathbb{R} \) and \(\vec{r} = \mu(\vec{d} \times \vec{f}) \), \(\mu \in \mathbb{R} \) respectively. If \(L_3 \) is a line which is perpendicular to both \(L_1 \) and \(L_2 \) and cuts both of them, then which of the following options describe \(L_3 \)?

- \(\vec{r} = \vec{a} + \lambda(\vec{b} \times \vec{c}) \), \(\lambda \in \mathbb{R} \)
- \(\vec{r} = \frac{2}{9}(\vec{a} + \vec{b} + \vec{c}) + t(\vec{d} \times \vec{f}) \), \(t \in \mathbb{R} \)
- \(\vec{r} = \frac{1}{3}(\vec{a} + \vec{b} + \vec{c}) + t(\vec{d} \times \vec{f}) \), \(t \in \mathbb{R} \)

Ans. (B,C,D)

Sol. Both given lines are skew lines.

So direction ratios of any line perpendicular to these lines are \(6i + 6j - 3k \) or \(2i, 2j, -1k \).

Points at shortest distance between given lines are

\[A(1-i, 2i, 2i) \]
\[B(2i, -4j, 2i) \]

\[\overrightarrow{AB} \perp L_1 \]
\[\overrightarrow{AB} \perp L_2 \]

So \(\alpha = \frac{2}{9} \)

Now equation of required line \(\vec{r} = \left(\frac{8i}{9} + \frac{2j}{9} - \frac{k}{9} \right) + \alpha(2i + 2j - k) \)

Now by option B, C, D are correct.
9. Equation of ellipse \(E_1 \) is \(\frac{x^2}{9} + \frac{y^2}{4} = 1 \). A rectangle \(R_m \), whose sides are parallel to co-ordinate axes is inscribed in \(E_1 \) such that its area is maximum. Now \(E_n \) is an ellipse inside \(R_{n-1} \) such that its axes are along co-ordinate axes and has maximum possible area \(\forall m \geq 2, n \in \mathbb{N} \), further \(R_n \) is a rectangle whose sides are parallel to co-ordinate axes and is inscribed in \(E_{n-1} \), having maximum area \(\forall n \geq 2, n \in \mathbb{N} \).

(A) \(\sum_{m=1}^{n} \) area of rectangle \((R_m) < 24 \ \forall m \in \mathbb{N}

(B) Length of latus rectum of \(E_n \) is \(\frac{1}{6} \)

(C) Distance between focus and centre of \(E_m \) is \(\frac{\sqrt{5}}{32} \)

(D) The eccentricities of \(E_{18} \) and \(E_{19} \) are not equal

Ans. (AB)

Sol.

Area Max when \(\theta = 45^\circ

\[
\begin{array}{c|c|c|c|c|c}
 & a & b & c & d & e \\
\hline
E_1 & 3 & 2 & 0 & 0 & 0 \\
E_2 & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 & 0 & 0 \\
E_3 & \frac{\sqrt{2}}{3} & \frac{\sqrt{2}}{3} & \frac{\sqrt{2}}{3} & 0 & 0 \\
E_4 & \frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & 0 \\
E_5 & \frac{\sqrt{2}}{5} & \frac{\sqrt{2}}{5} & \frac{\sqrt{2}}{5} & \frac{\sqrt{2}}{5} & \frac{\sqrt{2}}{5} \\
\end{array}
\]

(A) \(E_1 + E_2 + \ldots + E_n \)

\[
\frac{2ab}{1 - \frac{1}{\sqrt{2}}} = 4ab = 4.32 = 24
\]

(B) Length of LR is ellipse \(\frac{2b^2}{a} = \frac{2 \times 4.32^4}{2^4} = \frac{1}{6} \)

(C) distance between focus and center of ellipse \(a \), \(e_1 = \frac{3}{3} \times \frac{\sqrt{5}}{16} = \frac{\sqrt{5}}{16} \)

Resonance Eduventures Limited

This solution was downloaded from Resonance JEE (ADVANCED) 2019 Solution portal. PAGE # 8

10. In a non right angled triangle \(\triangle PQR \), let \(p, q, r \) denote the lengths of the sides opposite to the angle \(P, Q, R \) respectively. The median from \(R \) meets the side \(PQ \) at \(S \), the perpendicular from \(P \) meets the side \(QR \) at \(E \), and \(RS \) and \(PE \) intersect at \(O \). If \(p = \sqrt{3} \), \(q = 1 \) and the radius of the circumcircle of the \(\triangle PQR \) equals to 1, then which of the following options is/are correct?

(A) length of \(RS = \frac{\sqrt{3}}{2} \)

(B) length of \(OE = \frac{1}{6} \)

(C) Radius of incircle of \(\triangle PQR = \frac{\sqrt{3}}{2} (2 - \sqrt{3}) \)

(D) Area of \(\triangle SOE = \frac{\sqrt{3}}{12} \)

\(\text{A} \) एक अन्तर्वैदीक \(\triangle PQR \) में \(p, q, r \) क्रमांक कोणों \(P, Q, R \) के विकर्ण त्रिभुजों की लघुत्तम है। \(R \) से \(P \) की दिशा में भुजा लें \(PQ \) के \(S \) पर, \(P \) से \(QR \) को \(E \) पर मिलता है तथा \(RS \) एवं \(PE \) किन्हीं \(O \) पर प्रतिविद्यमान करती है। \(\text{विर} \) \(p = \sqrt{3}, q = 1 \) तथा \(\triangle PQR \) के परिवृत्त की विभाजन 1 हो तो निम्न घाती भिन्नों में काम सकते हैं -
11. Let \(T \) denote a curve \(y = f(x) \) which is in the first quadrant and let the point \((1, 0)\) lie on it. Let the tangent to \(T \) at a point \(P \) intersect the \(y \)-axis at \(Y_T \) and \(PY_T \) has length 1 for each point \(P \) on \(T \). Then which of the following option may be correct?

- **A** \(y = \sqrt{1-x^2} \) \(\sqrt{1-x^2} \)
- **B** \(xy' - \sqrt{1-x^2} = 0 \)
- **C** \(y = -\sqrt{1-x^2} + \sqrt{1-x^2} \)
- **D** \(xy' + \sqrt{1-x^2} = 0 \)

Ans. (ABCD)

Sol.

Let \(f(x) \) be differentiation of \(f(x) \) equation of tangent

\[
y - f(a) = f'(a)(x-a)
\]

Put \(x = 0 \)

\[
y - f(a) = -af'(a)
\]

\[
y = f(a) - af'(a)
\]

\[
y_T = 0, (0, f(0) - a\cdot 0)
\]

\[
PY_T = \sqrt{a^2 + (f'(a))^2} = 1
\]

\[
a^2 + a^2(\frac{g'(a)}{g(a)})^2 = 1
\]

\[
(\frac{g'(a)}{g(a)})^2 = \frac{1-a^2}{a^2} = \frac{1-a^2}{a^2}
\]
\[
\int kf(x) \, dx = k \int f(x) \, dx
\]

Put \(\sqrt{1-x^2} = t \)

\[y = \pm \int \frac{-x^2 \, dt}{1-t^2} = \pm \left(1 - \frac{1}{2} \left(\frac{1-t}{1+t} + \frac{1+t}{1-t} \right) \right) + c = \pm \left(1 - \frac{1}{2} \frac{(1+t)^2}{1-t^2} \right) + c = \pm \left(\sqrt{1-x^2} - \ln 1+\sqrt{1-x^2} \right) + c \]

\[\text{Put } x = 1 \text{ and } y = 0 \implies c = 0 \]

Problem 12. Let \(f : \mathbb{R} \rightarrow \mathbb{R} \) be given by

\[
f(x) = \begin{cases}
 x^5 + 5x^4 + 10x^3 + 10x^2 + 3x + 1, & x < 0 \\
 x^2 - x + 1, & 0 \leq x < 1 \\
 (2/3)x^3 - 4x^2 + 7x - (8/3), & 1 \leq x < 3 \\
 (x-2)/(x-3) - x + (10/3), & x \geq 3
\end{cases}
\]

Then which of the following options is/are correct?

(A) \(f \) is onto
(B) \(f' \) is not differentiable at \(x = 1 \)
(C) \(f' \) has a local maximum at \(x = 1 \)
(D) \(f \) is increasing on \((0, 1)\)

Solution.

\[
f(x) = \begin{cases}
 x^5 + 5x^4 + 10x^3 + 10x^2 + 3x + 1, & x < 0 \\
 x^2 - x + 1, & 0 \leq x < 1 \\
 (2/3)x^3 - 4x^2 + 7x - (8/3), & 1 \leq x < 3 \\
 (x-2)/(x-3) - x + (10/3), & x \geq 3
\end{cases}
\]

This solution was downloaded from Resonance JEE (ADVANCED) 2019 Solution portal.
SECTION-3 (Maximum Marks : 18)

- This section contains SIX (06) questions. The answer to each question is a NUMERICAL VALUE.
- For each question, enter the correct numerical value of the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer. If the numerical value has more than two decimal places truncate/round-off the value to TWO decimal places.
- Answer to each question will be evaluated according to the following marking scheme:

 Full Marks : +4 If ONLY the correct numerical value is entered.
 Zero Marks : 0 In all other cases.

13. \(I = \frac{1}{\pi} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{dx}{1 + \sin^2 x} \)

Then find \(27I^2 \).

\(I = \frac{1}{\pi} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1}{1 + \sin^2 x} dx \)

Ans. \((4)\)

Sol.

\(I = \frac{1}{\pi} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1}{1 + \sin^2 x} dx \) \quad \text{(1)}

by \(a + b - x \) property

\(\frac{1}{\pi} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1}{1 + \sin^2 x} dx = \frac{2}{\pi} \int_{0}^{\frac{\pi}{4}} \frac{1}{1 + \sin^2 x} dx \) \quad \text{(2)}

Adding (1) and (2)

\(2I = \frac{2}{\pi} \int_{0}^{\frac{\pi}{4}} \frac{1}{1 + \sin^2 x} dx \quad \Rightarrow \quad I = \frac{1}{\pi} \int_{0}^{\frac{\pi}{4}} \frac{1}{1 + \sin^2 x} dx = \frac{1}{\pi} \int_{0}^{\frac{\pi}{4}} \sec^2 x dx \quad \Rightarrow \quad 1 - \int_{0}^{\frac{\pi}{4}} \frac{1}{2 - (2\cos^2 x - 1)} dx = \frac{1}{\pi} \int_{0}^{\frac{\pi}{4}} \sec^2 x dx = 2 - \frac{2}{3\sqrt{3}} x \quad \Rightarrow \quad I = \frac{1}{\pi} \int_{0}^{\frac{\pi}{4}} \sec^2 x dx = \frac{1}{2} - \frac{1}{3\sqrt{3}} x \quad \Rightarrow \quad I = \frac{1}{2} - \frac{1}{3\sqrt{3}} \)

Put \(\tan x = \frac{1}{\sqrt{3}} \sec^2 x dx = dt \)

\(= \frac{2}{\pi} \left[\frac{1}{3\sqrt{3}} - 1 \right] \left[\tan^{-1} \left(\frac{1}{\sqrt{3}} \right) \right] = \frac{2}{\pi} \left[\frac{1}{3\sqrt{3} \pi} - - \frac{1}{\pi} \left(\frac{1}{\sqrt{3}} \right) \right] = \frac{2}{\pi} \left[\frac{1}{3\sqrt{3}} \right] = \frac{2}{3\sqrt{3}} \)

Now \(27I^2 = 27 \times \frac{4}{27} = 4 \)
14. Let the point B be the reflection of the point A(2, 3) with respect to the line 8x - 6y = -23 = 0. Let T and T9 be circles of radii 2 and 1 with centres A and B respectively. Let T be a common tangent to the circles T and T9 such that both the circles are on the same side of T. If C is the point of intersection of T and the line passing through A and B, then the length of the line segment AC is

\[8x - 6y - 23 = 0 \]

\[\text{Ans.} \quad 10 \]

Sol.

\[AL = \frac{16 - 18 - 23}{10} = \frac{5}{2} \]

\[CB = 1 \]

\[CA = 2 \]

\[CA - 5 = 1 \]

\[CA = 10 \]

15. If \(a, d \) denotes an A.P. with first term \(a \) and common difference \(d \). If the A.P. formed by intersection of three A.P.'s given by \((1, 3), (2, 5) \) and \((3, 7) \) is a new A.P. \((A, D) \). Then the value of \(A + D \) is \(\text{Ans.} \quad 157 \)

\[\text{Sol.} \]

First series is \([1, 4, 7, 10, 13, \ldots \ldots.] \)

Second series is \([2, 7, 12, 17, \ldots \ldots.] \)

Third series is \([3, 10, 17, 24, \ldots \ldots.] \)

See the least number in the third series which leaves remainder 1 on dividing by 3 and leaves remainder 2 on dividing by 5.

\[\Rightarrow 52 \text{ is the least number in the third series which leaves remainder 1 on dividing by 3 and leaves remainder 2 on dividing by 5} \]

\[\text{Now,} A = 52 \]

\[D \text{ is L.C.M. of} (3, 5, 7) = 105 \]

\[\Rightarrow A + D = 52 + 105 = 157 \]
17. Equation of three lines \(r = \lambda \mathbf{i} + \mu \mathbf{j} + \gamma \mathbf{k} \) and a plane \(x + y + z = 1 \) are given then area of triangle formed by point of intersection of line and plane is \(\Delta \), then \((6\Delta)^2\) equals

\(r = \lambda \mathbf{i}, r = \mu \mathbf{j} + \mathbf{j}, r = \gamma \mathbf{k} + \mathbf{k} \) दीने रेखाओं के समीकरण हैं एवं \(x + y + z = 1 \) एक समतल का समीकरण है तो \(\Delta \) के लिए \((6\Delta)^2\) का मान क्या होगा?

Ans. \((0.75)\)

Sol.
Put \((\lambda, 0, 0)\) in \(x + y + z = 1 \) \(\Rightarrow \lambda = 1 \Rightarrow P(1, 0, 0)\)

Put \((\mu, \mu, 0)\) \(\Rightarrow 2\mu = 1 \Rightarrow \mathbf{Q}(\frac{1}{2}, \frac{1}{2}, 0)\)

Put \((\gamma, \gamma, \gamma)\) \(\Rightarrow \gamma = \frac{1}{3} \Rightarrow R(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})\)

Area of triangle \(PQR = \frac{1}{2} |PQ \times PR| = \frac{1}{2} \left| \begin{vmatrix} 1 & \frac{1}{2} & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \frac{1}{3} \end{vmatrix} \right| = \frac{1}{12} |1 + 0 + 0| = \frac{1}{12} \Rightarrow (6\Delta)^2 = 0.75\)

18. That \(\omega \neq 1\) be a cube root of unity. Then minimum value of set \(\{(a + b\omega + c\omega^2)^2; a, b, c\text{ are distinct non zero integers}\}\) equals _________.

माना \(\omega \neq 1\) एक कवर समूह है। तो सूची \(\{(a + b\omega + c\omega^2)^2; a, b, c\text{ निर्दि: सभी एक समान नहीं हैं}\}\) का मूल्यांकन मान होगा जहां \(a, b, c\) किन्तु—मिन्नत अवश्य समिक्षित हैं।

Ans. \((3)\)

Sol.
\[(a + b\omega + c\omega^2)^2 = a^2 + b^2 + c^2 - ab - bc - ca = \frac{1}{2}[(a - b)^2 + (b - c)^2 + (c - a)^2]\]

it will be minimum when \(a = 1, b = 2, c = 3\)
so minimum value is 3.

Resonance Eduventures Limited
Registered & Corporate Office: CG Tower, A-46 & 48, IPA, Near City Mall, Jhandewal Road, Kolsi (Raj.) - 322005
Ph. No.: 033-4777777, 033-47777700, Toll Free: 1800 206 5555 | FAX No.: +91-33-28716722 | To Know more: Visit RESONANCE@36677
Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80320PI2007PLC004029

This solution was downloaded from Resonance JEE (ADVANCED) 2019 Solution portal