

FINAL JEE-MAIN EXAMINATION - JANUARY, 2020

(Held On Thursday 09th JANUARY, 2020) TIME: 9:30 AM to 12:30 PM

MATHEMATICS

A spherical iron ball of 10 cm radius is 1. coated with a layer of ice of uniform thickness the melts at a rate of 50 cm³/min. When the thickness of ice is 5 cm, then the rate (in cm/min.) at which of the thickness of ice decreases, is:

(1)
$$\frac{1}{36\pi}$$

(2)
$$\frac{5}{6\pi}$$

(3)
$$\frac{1}{18\pi}$$

(1)
$$\frac{1}{36\pi}$$
 (2) $\frac{5}{6\pi}$ (3) $\frac{1}{18\pi}$ (4) $\frac{1}{54\pi}$

NTA Ans. (3)

ALLEN Ans. (3)

- 2. If the number of five digit numbers with distinct digits and 2 at the 10th place is 336 k, then k is equal to:
 - (1) 8
- (2) 6
- (3) 4
- (4) 7

NTA Ans. (1)

ALLEN Ans. (1)

- Let z be complex number such that $\left| \frac{z-i}{z+2i} \right| = 1$ **3.** and $|z| = \frac{5}{2}$. Then the value of |z + 3i| is :
 - (1) $\sqrt{10}$ (2) $2\sqrt{3}$ (3) $\frac{7}{2}$ (4) $\frac{15}{4}$

NTA Ans. (3)

ALLEN Ans. (3)

- 4. In a box, there are 20 cards, out of which 10 are lebelled as A and the remaining 10 are labelled as B. Cards are drawn at random, one after the other and with replacement, till a second A-card is obtained. The probability that the second A-card appears before the third B-card is:
- (1) $\frac{11}{16}$ (2) $\frac{13}{16}$ (3) $\frac{9}{16}$ (4) $\frac{15}{16}$

NTA Ans. (1)

ALLEN Ans. (1)

Admissions Open

Class 6 to 12 & 12 Pass

ellen.ac.in

JEE (ADV.)

Kartikey Gupta

TEST PAPER WITH ANSWER

- The value of $\int_{0}^{2\pi} \frac{x \sin^8 x}{\sin^8 x + \cos^8 x} dx$ is equal to:
 - (1) 2π
- (2) 4π
- (3) $2\pi^2$
- (4) π^2

NTA Ans. (4)

ALLEN Ans. (4)

- **6.** If $f'(x) = \tan^{-1}(\sec x + \tan x)$, $-\frac{\pi}{2} < x < \frac{\pi}{2}$, and f(0) = 0, then f(1) is equal to :
 - $(1) \frac{\pi 1}{4}$ $(2) \frac{\pi + 2}{4}$ $(3) \frac{\pi + 1}{4}$ $(4) \frac{1}{4}$

NTA Ans. (3)

ALLEN Ans. (3)

If the matrices $A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 3 & 4 \\ 1 & -1 & 3 \end{bmatrix}$, B = adjA and

C = 3A, then $\frac{|adjB|}{|C|}$ is equal to:

- (1)72

- (4) 16

NTA Ans. (3)

ALLEN Ans. (3)

- The number of real roots of the equation, $e^{4x} + e^{3x} - 4e^{2x} + e^{x} + 1 = 0$ is :
 - (1) 4
- (2) 2
- $(3) \ 3$
- (4) 1

NTA Ans. (4)

ALLEN Ans. (4)

9. Negation of the statement:

 $\sqrt{5}$ is an integer or 5 is irrational is :

- (1) $\sqrt{5}$ is irrational or 5 is an integer.
- (2) $\sqrt{5}$ is not an integer and 5 is not irrational.
- (3) $\sqrt{5}$ is an integer and 5 is irrational.
- (4) $\sqrt{5}$ is not an integer or 5 is not irrational.

NTA Ans. (2)

ALLEN Ans. (2)

Appear in ASAT on 19 Jan. 2020

Final JEE-Main Exam January, 2020/09-01-2020/Morning Session

- Let the observations $x_i (1 \le i \le 10)$ satisfy the equations, $\sum_{i=1}^{10} (x_i - 5) = 10$ and $\sum_{i=1}^{10} (x_i - 5)^2 = 40$. If μ and λ are the mean and the variance of the observations, $x_1 - 3$, $x_2 - 3$,, $x_{10} - 3$, then the ordered pair (μ, λ) is equal to :
 - (1) (6, 6) (2) (3, 6) (3) (6, 3) (4) (3, 3)

NTA Ans. (4)

ALLEN Ans. (4)

- The product $2^{\frac{1}{4}} \cdot 4^{\frac{1}{16}} \cdot 8^{\frac{1}{48}} \cdot 16^{\frac{1}{128}} \cdot \dots$ to ∞ is equal
 - (1) $2^{\frac{1}{2}}$ (2) $2^{\frac{1}{4}}$ (3) 2

NTA Ans. (1)

ALLEN Ans. (1)

- A circle touches the y-axis at the point (0, 4) and passes through the point (2, 0). Which of the following lines is not a tangent to this circle?
 - (1) 3x 4y 24 = 0 (2) 3x + 4y 6 = 0
- - (3) 4x + 3y 8 = 0 (4) 4x 3y + 17 = 0

NTA Ans. (3)

ALLEN Ans. (3)

- If e₁ and e₂ are the eccentricities of the ellipse, $\frac{x^2}{18} + \frac{y^2}{4} = 1$ and the hyperbola, $\frac{x^2}{9} - \frac{y^2}{4} = 1$ respectively and (e₁, e₂) is a point on the ellipse, $15x^2 + 3y^2 = k$, then k is equal to:
 - (1) 15
- (2) 14
- (3) 17
- (4) 16

NTA Ans. (4)

ALLEN Ans. (4)

- Let f be any function continuous on [a, b] and twice differentiable on (a, b). If for all $x \in (a, b)$, f'(x) > 0 and f''(x) < 0, then for any $c \in (a, b)$, $\frac{f(c)-f(a)}{f(b)-f(c)}$ is greater than :
 - (1) $\frac{b+a}{b-a}$ (2) $\frac{b-c}{c-a}$ (3) $\frac{c-a}{b-c}$ (4) 1

NTA Ans. (3)

ALLEN Ans. (3)

15. If for some α and β in R, the intersection of the following three places

$$x + 4y - 2z = 1$$

$$x + 7y - 5z = \beta$$

$$x + 5y + \alpha z = 5$$

is a line in R^3 , then $\alpha + \beta$ is equal to :

- (1) 10
 - (2) -10
- (3) 2
- (4) 0

NTA Ans. (1)

ALLEN Ans. (1)

The integral $\int \frac{dx}{(x+4)^{\frac{8}{7}}(x-3)^{\frac{6}{7}}}$ is equal to : 16.

(where C is a constant of integration)

$$(1) \left(\frac{x-3}{x+4}\right)^{\frac{1}{7}} + C$$

(2)
$$-\left(\frac{x-3}{x+4}\right)^{-\frac{1}{7}} + C$$

(3)
$$\frac{1}{2} \left(\frac{x-3}{x+4} \right)^{\frac{3}{7}} + C$$

$$(4) -\frac{1}{13} \left(\frac{x-3}{x+4} \right)^{\frac{13}{7}} + C$$

NTA Ans. (1)

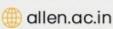
ALLEN Ans. (1)

- **17.** Let C be the centroid of the triangle with vertices (3, -1), (1, 3) and (2, 4). Let P be the point of intersection of the lines x + 3y - 1 = 0and 3x - y + 1 = 0. Then the line passing through the points C and P also passes through the point:
 - (1)(7, 6)
- (2) (-9, -6)
- (3) (-9, -7)
- (4) (9, 7)

NTA Ans. (2)

ALLEN Ans. (2)

Admissions Open Class 6 to 12 & 12 Pass



AIR JEE (Main) 2019 Kevin Martin

Appear in ASAT

on 19 Jan. 2020

(0) 0744-2757575

18. If
$$f(x) = \begin{cases} \frac{\sin(a+2)x + \sin x}{x} ; & x < 0 \\ b & ; & x = 0 \\ \frac{(x+3x^2)^{\frac{1}{3}} - x^{-\frac{1}{3}}}{\frac{4}{x^3}} ; & x > 0 \end{cases}$$

is continuous at x = 0, then a + 2b is equal to :

- (2) 1
- (3) -2
- (4) 0

NTA Ans. (4)

ALLEN Ans. (4)

The value of **19.**

$$\cos^{3}\left(\frac{\pi}{8}\right)\cdot\cos\left(\frac{3\pi}{8}\right)+\sin^{3}\left(\frac{\pi}{8}\right)\cdot\sin\left(\frac{3\pi}{8}\right)$$

- (1) $\frac{1}{4}$ (2) $\frac{1}{\sqrt{2}}$ (3) $\frac{1}{2\sqrt{2}}$ (4) $\frac{1}{2}$

NTA Ans. (3)

ALLEN Ans. (3)

If for all real triplets (a, b, c), $f(x) = a + bx + cx^2$;

then $\int_{a}^{b} f(x) dx$ is equal to:

- (1) $\frac{1}{2} \left\{ f(1) + 3f\left(\frac{1}{2}\right) \right\}$
- (2) $2\left\{3f(1) + 2f\left(\frac{1}{2}\right)\right\}$
- (3) $\frac{1}{6} \left\{ f(0) + f(1) + 4f\left(\frac{1}{2}\right) \right\}$
- (4) $\frac{1}{3} \left\{ f(0) + f\left(\frac{1}{2}\right) \right\}$

NTA Ans. (3)

ALLEN Ans. (3)

The coefficient of x^4 is the expansion of 21. $(1 + x + x^2)^{10}$ is ———.

NTA Ans. (615.00)

ALLEN Ans. (615.00)

The number of distinct solutions of the equation $\log_{\frac{1}{2}} |\sin x| = 2 - \log_{\frac{1}{2}} |\cos x|$ in the interval [0, 2π], is ———

NTA Ans. (8.00)

ALLEN Ans. (8.00)

If for $x \ge 0$, y = y(x) is the solution of the differential equation

$$(x + 1)dy = ((x + 1)^2 + y - 3)dx$$
, $y(2) = 0$,
then y(3) is equal to ———.

NTA Ans. (3.00)

ALLEN Ans. (3.00)

24. If the vectors, $\vec{p} = (a+1)\hat{i} + a\hat{j} + a\hat{k}$,

$$\vec{q} = a\hat{i} + (a+1)\hat{j} + a\hat{k}$$
 and

$$\begin{split} \vec{r} &= a\hat{i} + a\hat{j} + (a+1)\hat{k} \ (a \in R) \qquad \text{are} \qquad \text{coplanar} \\ \text{and} \ 3\big(\vec{p}.\vec{q}\big)^2 - \lambda \big|\vec{r} \times \vec{q}\big|^2 = 0 \ , \ \text{then the value of} \ \lambda \\ \text{is} &=\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-}. \end{split}$$

NTA Ans. (1.00)

ALLEN Ans. (1.00)

The projection of the line segment joining the points (1, -1, 3) and (2, -4, 11) on the line joining the points (-1, 2, 3) and (3, -2, 10)is ——.

NTA Ans. (8.00)

ALLEN Ans. (8.00)

(C) 0744-2750275

COMPUTER BASED TEST (CBT)

JEE (Main+Adv.) 2020

Based on Latest Pattern

Next Test 2nd Feb 2020